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Abstract. A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat,
is considered for the calculation of stationary heat transfer in the Grad 13 moment system and
linearized extended thermodynamics of 14 moments. It is shown that the required distance of
grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is
useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13
and 14 moments are compared with an analytical solution for heat transfer with 13 moments.
The results indicate that the boundary conditions do not guarantee conservation of energy at the
walls. In order to overcome this deficiency a modification of the boundary conditions is presented
and discussed.
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1. Introduction

Recently Le Tallec & Perlat [1] proposed a numerical scheme for the moment
equations of kinetic theory. The main ingredient of this kinetic scheme is the use
of half-space moments of the phase density. A similar method was developed by
Junk [2]. Within these schemes it is easy to formulate boundary conditions for
the moments which follow directly from the boundary conditions for the phase
density.

While Le Tallec & Perlat use their scheme for the entropy maximum closure [3],
also known as Levermore system [4], the method can be applied to any moment
method of kinetic theory which provides a normal solution of the phase density.
Thus, the method may be used in the Grad moment method [5] as well as in kinetic
theory based extended thermodynamics [6].

In the present paper we consider the most simple application: one-dimensional
stationary heat transfer in a gas at rest, described by Grad’s 13 moment system [5]
and by linearized extended thermodynamics with 14 moments [6]. This problem
is well suited for checking the numerical scheme, since the moment equations are
analytically solvable in the 13 moment case.

For processes close to equilibrium, there is no difference in the results from
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Grad’s and Levermore’s moment systems so that our results are strongly related
to the Levermore system. The Grad closure provides explicit closure relations for
moments, fluxes and half-space moments. This allows analytical considerations on
the scheme which are not possible in the framework of the Levermore closure, in
which the closure relations must be calculated numerically.

In particular, we tackle the question of the appropriate grid size for the numer-
ical discretisation and show that the distance of grid points must be considerably
less then the mean free path - a fact that was not recognized in [1] and [2]. There-
fore, we consider only the case of large Knudsen numbers for our calculations.

The results indicate that the scheme does not preserve energy at the walls.
We give arguments that this behavior should change, when a larger number of
moments is taken into account. Moreover, we present a simple change of the
boundary conditions which gives better results.

The paper is organized as follows: The next section gives a brief introduction
to moment systems of kinetic theory. Section 3 deals with moment equations for
13 and 14 moments. These are presented and analytically solved for the case of
stationary heat conduction in the 13 moment case. In Section 4 we present an
alternative derivation of the scheme of Le Tallec & Perlat and the application of
the scheme to the heat transfer problem. This section includes also a detailed
discussion of the results. The above mentioned modification of the boundary
conditions will be found in Section 5. The paper closes with our conclusions.

2. Moment systems of kinetic theory

2.1. Kinetic theory

We consider one-atomic ideal gases. The objective of kinetic gas theory is the
determination of the phase density f (xi, t, ci) which gives the number density
of particles in the phase space element dxdc. Here, xi, t denote space and time
variables, respectively, and ci is the velocity of a particle of mass m. The phase
density is governed by the Boltzmann equation [7] [8],

∂f

∂t
+ ck

∂f

∂xk
= S (f) , (1)

where the collision term S (f) accounts for the change of the phase density due to
collisions among particles.

Once the phase density is known, one may calculate its moments, for instance
the mass density %, the momentum density %vi and the energy density %ε, given
by

% = m

∫
f dc , %vi = m

∫
cif dc , %ε =

3
2
%
k

m
T +

%

2
v2 =

m

2

∫
c2f dc .
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In these definitions, k is Boltzmann’s constant, vi denotes the barycentric velocity
of the gas and T denotes the temperature, which is defined here.

For the calculation of boundary value problems, one needs boundary conditions
for the phase density f . The most simple model for these is due to Maxwell [7] [8].
He assumes that the fraction (1− θ) of the emerging particles has been reflected
elastically at the wall. The remaining fraction θ is thermalized and leaves the
wall in a Maxwellian distribution. θ is called accommodation coefficient. In this
paper, we consider only the simplest case: full accommodation with θ = 1. We
choose the normal vector ni of the wall so that it points inside the gas such that
we have nk

(
ck − vWk

)
≤ 0 for the emerging particles and nk

(
ck − vWk

)
≥ 0 for the

particles that leave the wall; vWk denotes the velocity of the wall.
Let fN denote the phase density inside the gas. Then, we may write the phase

density at the wall f̂ according to Maxwells boundary conditions as

f̂ =
{
fW , nk

(
ck − vWk

)
≥ 0

fN , nk
(
ck − vWk

)
≤ 0 .

(2)

fW is the Maxwellian of the thermalized particles,

fW = fM
(
%W , TW , v

W
i

)
=
%W
m

√
m

2πkTW

3

e
− m

2kTW
(ck−vWk )2

,

where TW denotes the temperature of the wall and %W is the density of the ther-
malized particles. %W has be to determined in order to ensure that the wall does
not accumulate particles, a condition which may be written as

m

∫
nk(ck−vWk )≥0

f̂
(
ck − vWk

)
nkdc = −m

∫
nk(ck−vWk )≤0

f̂
(
ck − vWk

)
nkdc . (3)

In the remainder of this paper we consider a gas at rest only, where the mean value
of ci vanishes, so that

∫
fNcknkdc = 0. Of course, in this case also the wall is at

rest, vWk = 0 and the condition (3) simplifies to

m

∫
nkck≥0

fW cknkdc = m

∫
nkck≥0

fNcknkdc . (4)

2.2. Moments and moment equations

In moment methods one assumes that the state of the gas is satisfactorily described
by a set of moments,

uA =
∫
ψA (ck) f dc ,

where ψA (ck) is a vector of polynomials of the microscopic velocity. Which mo-
ments one has to take into account depends on the process under consideration.
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In Grad’s 13 moment theory one has ψA = m
{

1, ci, 1
2c

2, c〈icj〉,
1
2c

2ci
}

, i.e. the
moments %, %vi, %ε defined above plus the deviator of the momentum flux1 and the
energy flux, extended thermodynamics of 14 fields adds the full trace of the forth
moment, ψ∆ = mc4.

Multiplication of the Boltzmann equation (1) by ψA and subsequent integration
over velocity space yields the moment equations

∂uA
∂t

+
∂FAk
∂xk

= PA , with FAk =
∫
ψAckf dc , PA =

∫
ψAS (f) dc (5)

where we have introduced the fluxes of the moments FAk and the productions PA.
Note, that the productions of mass, momentum and energy vanish.

The equations (5)1 do not form a closed system of partial differential equations
for the moments since they contain the fluxes and the productions which are not
a priori related to the moments. Here, a closure assumption is required, and it is
obvious that a phase density of the form

f (xk, t, ck) = f (uA (xk, t) , ck) (6)

serves for this purpose. A solution of this type is called ”normal solution”, and
there are several methods to obtain it. Grad found his normal solution by an
expansion around local equilibrium where the phase density is a Maxwellian. In
the last years the method of maximizing the entropy [3] became more and more
popular [4]. This method is equivalent to extended thermodynamics and we refer
the interested reader to the textbook of Müller & Ruggeri for a detailed discussion
of these topics [6].

One of the shortcomings of the moment theory is that it is not clear which
boundary conditions one has to choose for moments without physical meaning, a
problem which was addressed in [9]. The numerical scheme of Le Tallec & Perlat,
discussed in Section 4 below, allows the use of boundary condition (2) for the
phase density in its implementation. Thus, it should be possible to solve problems
of kinetic theory with an arbitrary number of moments.

3. Extended thermodynamics with 13 and 14 moments

3.1. Moment equations

Extended thermodynamics of 14 variables chooses ψA = m
{

1, ci, 1
2c

2, c〈icj〉,
1
2c

2ci,

c4
}

or, equivalently, ψA = m
{

1, Ci, 1
2C

2, C〈iCj〉,
1
2C

2Ci, C
4} where Ci = ci − vi

is the peculiar velocity. The second choice corresponds to the moments of the

1 Brackets denote the traceless part of a symmetric tensor.
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peculiar velocity

% = m

∫
f dc 0 = m

∫
Cif dc

3
2
%
k

m
T =

m

2

∫
C2f dc

pij = m

∫
CiCjf dc qi =

m

2

∫
C2Cif dc ∆ = m

∫
C4 (f − fM) dc .

where we have introduced the pressure tensor pij , the heat flux qi and the non-
equilibrium part of the full trace of the forth moment ∆. fM denotes the local
Maxwellian, viz.

fM =
%

m

√
m

2πkT

3

e−
m

2kT C
2
.

The trace of the pressure tensor defines the pressure

p =
1
3
pii = %

k

m
T .

The corresponding normal solution for the phase density follows either from Grad’s
method [5] or from entropy maximization [3], [4], [6] and subsequent linearization
around local thermal equilibrium as

f14 = fM

(
1 +

m2

8%k2T 2 ∆− m3

12%k3T 3 ∆C2 +
m4

120%k4T 4 ∆C4− (7)

+
m2

2%k2T 2 p〈jk〉CjCk −
m2

%k2T 2 qkCk

(
1− 1

5
m

kT
C2
))

.

The moment equations read

∂%

∂t
+
∂%vk
∂xk

= 0 , (8)

∂vi
∂t

+ vk
∂vi
∂xk

+
1
%

∂pik
∂xk

= 0 , (9)

3
2
%
k

m

(
∂T

∂t
+ vk

∂T

∂xk

)
+
∂qk
∂xk

+ pkl
∂vk
∂xl

= 0 , (10)

∂p〈ij〉
∂t

+
∂p〈ij〉vk

∂xk
+

4
5
∂q〈i
∂xj〉

+ 2pk〈i
∂vj〉
∂xk

= −α%p〈ij〉 , (11)

∂qi
∂t

+ vk
∂qi
∂xk

+
5
2
p
k

m

∂T

∂xi
+
kT

m

∂p〈ik〉
∂xk

+
1
6
∂∆
∂xi

+
7
2
p〈ik〉

k

m

∂T

∂xk
−
p〈il〉
%

∂plk
∂xk

+
7
5
qi
∂vk
∂xk

+
7
5
qk
∂vi
∂xk

+
2
5
qk
∂vk
∂xi

= −2
3
α%qi , (12)
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∂∆
∂t

+ vk
∂∆
∂xk

+ 8
kT

m

∂qk
∂xk

+ 8
kT

m
p〈kl〉

∂vk
∂xl
− 8

qk
%

∂p〈kl〉
∂xl

+ 28
k

m
qk
∂T

∂xk
+

7
3

∆
∂vk
∂xk

= −2
3
α%∆ , (13)

where α is a constant that follows by calculation of the collision production for
Maxwell molecules. %α is the collision frequency and the corresponding mean free

path is given by l =
√

k
mT/%α. The first three equations are the equations of

balance for the conserved quantities mass, momentum and energy.
The set of equations (8–13) reduces to Grad’s 13 moment equations, if one sets

∆ = 0 and omits the last equation.
Note, that the equations (8–13) are not of the form (5)1, due to the choice

of moments of the peculiar velocity. This is of no concern here, because we are
interested in problems with vanishing velocity only.

3.2. Stationary heat transfer with 13 and 14 moments

Let us consider the one-dimensional stationary heat transfer problem between two
rigid walls at rest at x = 0 and x = L with the temperatures

T (0) = T0, T (L) = TL .

Due to the one-dimensionality we have

vi = [v, 0, 0] , p〈ij〉 =

 p〈11〉 0 0
0 −1

2p〈11〉 0
0 0 −1

2p〈11〉

 , qi = [q, 0, 0] .

In the case under consideration, all time derivatives and the velocity vanish. Thus,
the mass balance (8) is identically fulfilled and the energy balance (10) reduces to
∂q
∂x = 0. Equation (11) now reads 8

15
∂q
∂x = −α%p〈11〉 and accordingly p〈ij〉 vanishes.

The balance of momentum (9) now gives the constancy of the pressure, p = const,
and this allows to introduce dimensionless quantities by

x̂ =
x

L
, T̂ =

T

T0
, ∆̂ =

∆
p kmT0

,

%̂ =
% kmT0

p
=

1
T̂
, q̂ =

q

p
√

k
mT0

, Kn =

√
k
mT0

3

αLp
.

Kn, the ratio between the mean free path at T0 and L, is the Knudsen number for
the heat transfer problem. There remains the following simple system of ordinary
non-linear differential equations

d5
2 T̂ + ∆̂

6
dx̂

= − 2
3Kn

q̂

T̂
,
d28q̂T̂
dx̂

= − 2
3Kn

∆̂
T̂

and q̂ = const. (14)
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with the boundary conditions

T̂ (0) = 1, T̂ (L) = T̂L .

Note that the heat flux q̂ = const. enters these equations as a parameter while
the constant pressure p determines the Knudsen number. The determination of
q̂ requires an additional boundary condition and in [9] this additional conditions
was found my means of the statement that the maximum of the local entropy
production becomes minimal in stationary processes. In the present context this
statement is not needed since the numerical scheme implies boundary conditions
for all moments.

We consider only the analytical solution for the 13 moment case - ∆ = 0 -
where (14) reduces to the law of Fourier

q̂F = −15
4
KnT̂

dT̂

dx̂
= const

with the solution

T̂ =
√

1 +
(
T̂ 2
L − 1

)
x̂ . (15)

In the case of small Knudsen numbers one has to consider the jump of the temper-
ature at a wall which depends on the details of the wall-particle interaction. We
consider the boundary condition (2) for gas and boundary at rest. The normal
part of the energy flux m

2
∫
c2cifdc has to be continuous at the wall, a condition

which we may write as m
2
∫
f̂ c2cknkdc = m

2
∫
fNc

2cknkdc or, with (2),

m

2

∫
nkck≥0

fW c
2cknkdc =

m

2

∫
nkck≥0

fNc
2ckdc . (16)

Now we consider Grad’s 13 moments phase density with vanishing shear stresses,
as it is appropriate in stationary heat transfer, viz.

f13 =
%

m

√
m

2πkT

3

e−
m

2kT c
2
(

1− m2

%k2T 2 qkCk

(
1− 1

5
m

kT
C2
))

,

where T is the temperature of the gas at the wall and % is its density. We obtain
from the conditions for conservation of mass and heat flux (4), (16)

1
2
%W

√
2
π

√
kTW
m

=
1
2
%

√
2
π

√
kT

m
,

%W

√
2
π

√
kTW
m

3

= %

√
2
π

√
kT

m

3

+
1
2
qknk .
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Elimination of the density %W yields for the temperature jump between wall and
gas

TW − T
T

=
1
2

√
π

2
qknk

p
√

kT
m

.

We denote the dimensionless temperatures of the gas at the walls by ϑ0 and ϑL
and find for the jumps at x̂ = 0, x̂ = 1

1− ϑ0
ϑ0

=
1
2

√
π

2
q̂√
ϑ0

,
T̂L − ϑL
ϑL

= −1
2

√
π

2
q̂√
ϑL

. (17)

The corresponding temperature function and heat flux are

T̂ =
√
ϑ2

0 +
(
ϑ2
L − ϑ2

0
)
x̂ , q̂ = −15

8
Kn

(
ϑ2
L − ϑ2

0

)
, (18)

where ϑ0 and ϑL follow from (17) with (18)2. In the remainder of the paper we
shall calculate the stationary heat transfer problem with numerical methods and
we shall use Equation (18) as a benchmark.

For the application of the kinetic scheme we shall follow Le Tallec & Perlat
and solve the stationary problem by time stepping. Thus, we need a set of insta-
tionary equations. We reduce the equations (8)–(13) due to our knowledge of the
stationary results. First of all, the pressure deviator vanishes in one-dimensional
stationary heat conduction and we may ignore p〈ik〉 and its balance equation (11)
from the beginning. Moreover the velocity will vanish, v = 0, while the pressure
will be constant, p = % kmT = const. If we impose these conditions from the be-
ginning, we have to ignore the balance equations of mass and momentum. The
remaining equations read

∂ 3
2p lnT
∂t

+
∂q

∂x
= 0 ,

∂q

∂t
+
∂ 5

2p
k
mT + ∆

6
∂x

= −2
3
α

p
k
mT

q , (19)

∂∆ + 30 k
mpT

∂t
+
∂28 k

mqT

∂x
= −2

3
α

p
k
mT

∆ ,

where (19)1 was used to rewrite (19)3 in a form appropriate for the numerical
scheme.
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4. Kinetic scheme of Le Tallec & Perlat

4.1. Derivation

We present our own derivation of the numerical scheme. While Le Tallec & Perlat
start from the Boltzmann equation, our argument is based on the moment equa-
tions plus the definitions of moments, fluxes and productions, and the knowledge
of the normal solution. We consider one-dimensional processes so that the moment
equations (5) read

∂uA
∂t

+
∂FA
∂x

= PA (20)

with FA = FA1. For the discretisation in space we consider an interval x ∈
(0, L) divided in n parts of length ∆x = L/n, with center points xi, i = 1, . . . , n.
Integration of (20) along ∆x gives

∂uiA
∂t

+
1

∆x

∫ xi+ ∆x
2

xi−∆x
2

∂FA
∂x

dx = P iA (21)

where

uiA =
1

∆x

∫ xi+ ∆x
2

xi−∆x
2

uAdx and P iA =
1

∆x

∫ xi+ ∆x
2

xi−∆x
2

PAdx .

Thus, the interval around xi is associated with one value uiA and the normal
solution for the phase density in ∆x is determined by this value, f i = f

(
uiA, ck

)
.

We consider the integral in (21) which yields∫ xi+ ∆x
2

xi−∆x
2

∂FA
∂x

dx = F
i+ 1

2
A − F i−

1
2

A ,

where F
i± 1

2
A = FA

(
xi ± ∆x

2

)
denote the fluxes at the borders of the interval. We

consider the definition (5)2 and decompose the flux into its parts due to particles
travelling in positive or negative x-direction, respectively,

F
i+ 1

2
A =

∫
ψAcxf

i+ 1
2 dc =

∫
cx≥0

ψAcxf
i+ 1

2 dc +
∫
cx≤0

ψAcxf
i+ 1

2 dc . (22)

Here, the first integral describes the flux of ψA from xi towards xi+1 and the
second integral gives the flux from xi+1 into xi.

The key step of the method is the assumption that the flux out of xi is deter-
mined by the state in cell i, while the flux into the cell i is determined by the state
in the neighboring cell, i+ 1. This assumption may be written as∫

cx≥0
ψAcxf

i+ 1
2 dc ' AiA ,

∫
cx≤0

ψAcxf
i+ 1

2 dc ' Bi+1
A
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where the half-fluxes in positive and negative direction, AiA and BiA, are defined
as

AiA =
∫
cx≥0

ψAcxf
i dc , BiA =

∫
cx≤0

ψAcxf
i dc . (23)

Now, (22) reads

F
i+ 1

2
A = AiA +Bi+1

A (24)

and we obtain the space discretized moment equations as

∂uiA
∂t

+
1

∆x

(
AiA +Bi+1

A −Ai−1
A −BiA

)
= P iA , i = 1, . . . , n . (25)

In order to show that the above discretisation is of first order in space we expand

uiA = uA , AiA = AA , Ai±1
A = AA ±

∂AA
∂x

∆x+
∂2AA
∂x2

(∆x)2

2
, etc. (26)

and obtain with AA +BA = FA from (25)

∂uA
∂t

+
∂FA
∂x
− ∆x

2
∂2 (AA −BA)

∂x2 = PA +O
(

(∆x)2
)
. (27)

The original equations are recovered, if ∆x is small and we shall discuss the ap-
propriate value of ∆x below.

Following Le Tallec & Perlat, we consider discrete times tj = j∆t with time
step ∆t and use a semi-implicit discretisation of (25), viz.

ui,j+1
A −∆tP i,j+1

A = ui,jA −
∆t
∆x

(
Ai,jA +Bi+1,j

A −Ai−1,j
A −Bi,jA

)
, (28)

i = 1, . . . , n ; j = 0, 1, . . . where ui,jA = uA
(
xi, j∆t

)
etc.

This is equation (32) of [1]. The solution of the numerical scheme (28) for the
variables uiA, i = 1, . . . , n requires

i.) Constitutive equations for the half fluxes and the productions

AiA = AiA
(
uiB
)
, BiA = BiA

(
uiB
)
, P iA = P iA

(
uiB
)

;

these follow from the definitions (23), (5) and the normal solution f i =
f
(
uiA, ck

)
.

ii.) Initial values for the moments, ui,0A
iii.) Boundary conditions, i.e. the half fluxes A0

A and Bn+1
A which follow from

the boundary conditions for the phase density. According to the boundary
condition (2), these are the half fluxes of the Maxwellians fW .
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4.2. Kinetic scheme for stationary heat transfer

We consider the scheme for the equations (19). Indeed, in the space derivatives of
these equations we find fluxes of the moments2, viz.

q = Fε =
m

2

∫
c2cxf14 dc ,

5
2
p
k

m
T +

∆
6

= Fq =
m

2

∫
c2cxcxf14 dc ,

28
k

m
qT = F∆ =

m

2

∫
c4cxf14 dc ,

so that we can apply the numerical scheme (28) to the set of equations (19). We
introduce the abbreviations

δ =

√
k

m
T0

∆t
∆x

and n =
L

∆x

and use the same dimensionless quantities as in Section 3 to obtain the following
scheme

T i,j+1 = T i,j exp
{
−2

3
δ
(
Ai,jε +Bi+1,j

ε −Ai−1,j
ε − Bi,jε

)}
,

qi,j+1
(

1 +
2
3

δ

nKn

1
T i,j+1

)
= qi,j − δ

(
Ai,jq +Bi+1,j

q −Ai−1,j
q −Bi,jq

)
, (29)

∆i,j+1
(

1 +
2
3

δ

nKn

1
T i,j+1

)
= ∆i,j − 30

(
T i,j+1 − T i,j

)
−

− δ
(
Ai,j∆ +Bi+1,j

∆ −Ai−1,j
∆ −Bi,j∆

)
,

where i runs from 1 to n. The quantities A and B are dimensionless half fluxes of
the phase density (7), given by

Aε =
1
2
q +

√
2
π

√
T

(
1 +

1
40

∆
T

)
Bε =

1
2
q −

√
2
π

√
T

(
1 +

1
40

∆
T

)
Aq =

5
4
T

(
1 +

1
15

∆
T

)
+

9
5

√
2
π

√
Tq

2 Note, that in a gas at rest Ci = ci holds.
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Bq =
5
4
T

(
1 +

1
15

∆
T

)
− 9

5

√
2
π

√
Tq

A∆ = 14Tq+ 12

√
2
π

√
T

3
+

3
2

√
2
π

√
T∆

B∆ = 14Tq− 12

√
2
π

√
T

3 − 3
2

√
2
π

√
T∆

It remains to determine the boundary conditions, i.e. the values of A0
A and Bn+1

A .
We denote the Maxwellians of the particles that leave the walls by f0, fL, and
have

A0
A =

∫
cx≥0

ψAckf0 dc and Bn+1
A =

∫
cx≤0

ψAckfL dc ,

with

f0 =
%0
m

√
m

2πkT0

3
e
− m

2kT0
c2

, fL =
%L
m

√
m

2πkTL

3
e
− m

2kTL
c2 .

T0 and TL are the temperatures of the walls and the densities %0, %L follow from
the requirement that the walls do not accumulate particles (4),∫

cx≥0
cxf0 dc = −

∫
cx≤0

cxf
1dc ,

∫
cx≤0

cxfL dc = −
∫
cx≥0

cxf
n+1 dc .

After some straightforward calculations we find

A0
ε =

√
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√
1
T 1

(
1− 1

120
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T 1

)
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)
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∆ = −12
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T 4
WL
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(
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120
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)
With these formulae, our numerical scheme for the calculation of one-dimensional
stationary heat transfer is complete. The above equations give the scheme for
extended thermodynamics with 14 moments. The scheme for Grad’s theory of 13
moments is obtained by setting ∆ = 0 and omission of equation (29)3.
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4.3. The appropriate grid-size

Now we ask for the number of grid points n which is required in order to have a
good agreement between the discretized equations and the original equations. We
consider the stationary case of (29) and expand the half fluxes up to second order
in ∆x, see (26), (27). We obtain with ∆x = 1

n in dimensionless formulation

dq

dx
−
√

2
π

d2√T
(

1 + 1
40

∆
T

)
dx2

1
n

= 0 ,

d
(5

2T + 1
6∆
)

dx
− 9

5

√
2
π

d2√Tq
dx2

1
n

= −2
3

1
Kn

q

T
, (30)

d28Tq
dx

− 12

√
2
π

d2
(√

T
3

+ 1
8
√
T∆
)

dx2
1
n

= −2
3

1
Kn

∆
T
.

For n → ∞ the original equations (14) are recovered. But which finite value of
n is large enough to guarantee that the additional terms may be neglected? We
consider the energy balance (30)1 where we insert the heat flux according to (30)2,

d

dx

(
T
d
(15

4 T + 1
4∆
)

dx

)

+

√
2
π

−27
10

d

dx

(
T
d2√Tq
dx2

)
1
n

+
d2√T

(
1 + 1

40
∆
T

)
dx2

1
Knn

 = 0 .

In this equation both terms in the square brackets must vanish. Since q is of
order O (Kn), the first term is of order O

(
Kn
n

)
and will vanish as 1

n for Knudsen

numbers smaller than 1. The second term, however, is of order O
(

1
Knn

)
and will

vanish only, if n� 1
Kn

.The Knudsen number is the ratio of the mean free path l
and the macroscopic length L, Kn = l/L, and n defines the grid size, ∆x = L/n so
that the above condition indicates that the grid size must be considerably smaller
then the mean free path,

∆x� l . (31)

This condition is a restriction to the applicability of the kinetic scheme. Only for
problems involving distances of few mean free paths, one may consider the kinetic
scheme as an appropriate tool for the numerical solution of moment equations.
Since one will need extended moment methods mostly in case of large Knudsen
numbers, this restriction may not be severe. Note, however, that the condition
(31) is violated in the applications to Couette flow in [1].

In order to avoid misunderstanding, we state that the restriction (31) is charac-
teristic for the kinetic schemes but not for the system (19). Indeed, if one considers
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Figure 1.
Stationary heat transfer with 13 (left column) and 14 (right column) moments, Kn = 0.1: tem-
perature T , heat flux q and fourth moment ∆ according to the numerical scheme (28) (continuous)
in comparison with exact solution of 13 moment case (18) (dashed).

the stationary case of (19) and performs a second order discretisation in space, i.e.
∂q
∂x = (qi+1 − qi−1)/ (2∆x) etc., one finds that Kn/n

2 � 1 has to hold. Clearly,
this restriction is less severe then (31).

4.4. Results and discussion

We consider a large Knudsen number, Kn = 0.1 with n = 1000 grid points and
δ = 0.2. As initial conditions we choose q = 0, ∆ = 0 and random temperatures
between the two wall temperatures which were chosen as T0 = 1 and TL = 2 ,
respectively.

Figure 1 shows the stationary results for 13 and 14 moments (50000 iterations)
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in comparison to the analytical result (18). In the 13 moment case (left column
of Fig.1) we find considerable agreement between the results for the temperature.
The heat flux, however, is not constant at the boundaries, but jumps. The values
of the temperature jumps do not agree between numerical and analytical solution
and also the constant value of the heat flux differs by 5% from the analytical
solution.

In the present problem the heat flux should be constant due to the conservation
of energy. The jumps correspond to an energy supply at the boundaries. Also in
the case of 14 moments, the results for the heat flux imply jumps at the walls, see
right column of Fig.1.

In [1], the authors find a similar jump for the shear stress in the case of Cou-
ette flow which contradicts the conservation of momentum. The authors suggest
that the jumps become smaller with an increasing number of grid points and will
eventually vanish for n→∞. This is in contradiction to our findings for the heat
flux which indicate that the jumps change only slightly with the number of grid
points. E.g. for the jump at the left wall, we find in the 14 moments case q1−q2 =
{0.007729, 0.006971, 0.006931, 0.006904} with n = {100, 1000, 2000, 5000}.

The explanation for this difference is found in the equations of the scheme for
the cells at the walls (stationary case): the number of grid points n appears only
in the combination 1

nKn
. It follows that the grid size has no influence in case that

condition (31) is fulfilled. As we said before, (31) is violated for the calculations
in [1] and this is the reason for the changes of the jumps with the grid size.

It is interesting that the jumps are smaller in the 14 moment case. This might
give some hope that a larger number of moments will give better results. Indeed,
it should be kept in mind that one will need many moments - not only 13 or 14
- in processes with large Knudsen numbers. In order to understand this better,
one has to consider that the moment method assumes a normal solution (6) in all
space points. According to the boundary condition (2), the phase density at the
wall is a discontinuous function of the microscopic velocity. Of course, one might
think of a normal solution, e.g. a series in Hermite polynomials, which pictures
this discontinuity sufficiently. Most probably, this will require a large number of
expansion coefficients, i.e. moments. Once one considers a sufficient number of
moments to resolve the discontinuity in velocity space, one may expect to have
conservation of energy and momentum at the walls. From our results for the
cases with 13 and 14 moments we conclude that these numbers are not sufficient,
although, as pointed out above, the jump in the heat flux is smaller for the 14
moment case.

Obviously, one will find remainders of the Maxwellian, and therefore a discon-
tinuous phase density, within a distance of some mean free path of the wall. Thus,
in any case, one will need a large number of moments, at least in the vicinity of
the wall. We like to emphasize, that this is a question of the number of moments,
and not of the form of the phase density: Also the Levermore closure of Ref. [1]
does not describe a discontinuous phase density.
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5. Modified boundary conditions

Now, we present a modification of the boundary conditions which may support
our arguments about the number of moments. We recall, that the phase density
f̂ , given by (2), is discontinuous in velocity space and that we shall need many
moments in order to approximate the discontinuity. The idea of our modification
is to construct a phase density f̄ at the boundary which is not discontinuous at
the walls, but an approximation of the original phase density f̂ . Speaking about
moment theories, we have to consider f̄ to be a good approximation, if a certain
number of its moments agree with the moments of f̂ , which we denote by

ûA =
∫
ψA (ck) f̂ dc

Of course, considering a moment theory with the normal solution f (uA, ck), we
choose this normal solution also at the wall, so that we have

f̄ = f (ûA, ci) .

The half fluxes from the walls, A0
A and Bn+1

A , respectively, have now to be calcu-
lated from the phase density f̄ . We obtain in dimensionless form
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p̂0, T̂0, p̂L, T̂L etc. are the dimensionless moments of f̂ at x = 0 and x = L,
respectively. Due to lack of space, their values will not be presented in this paper.
Figure 2 presents the results for stationary heat transfer with 13 and 14 moments
and Table 1 shows the average heat flux q =

∑n−1
i=2 q

i as well as the jumps at the
walls q1−q, qn−q. Also here, we find a jump in the heat flux, but it is considerably
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Figure 2.
Stationary heat transfer with 13 (left column) and 14 (right column) moments with modified
boundary conditions, Kn = 0.1.

smaller than in the original scheme, where it was about 5% (note the different scale
of Figures 1 and 2). With the new boundary conditions, we find a jump in the heat
flux of ca. 0.6% for 13 moments and of ca. 1.3% in the 14 moment case. Thus, our
modified boundary conditions need no further input to exhibit the conservation of
energy. We conclude that the violation of the conservation law for energy seems
to be a question of the boundary conditions and not of the discretisation method.

However, the temperature curve of the 13 moment case does not match the
analytical solution. This discrepancy is due to the fact, that the new boundary
conditions are only an approximation of the original ones. The approximation will
be better, if more moments are taken into account.



Vol. 51 (2000) Kinetic schemes and boundary conditions for moment equations 363

Table 1.
Heat flux q and its jumps q1 − q, qn − q, for the various methods (wall temperatures TW0 = 1,
TWL = 2, Kn = 0.1, 103 gridpoints, 5 104 iterations)

q q1 − q qn − q
ET13 analytic −0.3011 0 0
ET13 kin. scheme −0.2837 0.01535 0.01147
ET14 kin. scheme −0.2722 0.006971 0.01349
ET13 modified BC −0.3268 0.001907 0.0002741
ET14 modified BC −0.3036 0.0005942 0.004036

Table 2.
Heat flux q and its jumps q1 − q, qn − q, for the various methods (wall temperatures TW0 = 1,
TWL = 2, Kn = 0.01, 104 gridpoints, 7 105 iterations).

q q1 − q qn − q
ET13 analytic −0.051641 0 0
ET13 kin. scheme −0.05108 0.002503 0.002296
ET14 kin. scheme −0.05059 0.001560 0.001680
ET13 modified BC −0.05238 0.0002164 0.0001016
ET14 modified BC −0.05152 0.0001677 0.0002664

We also give a brief account of results obtained with different parameters.
Table 2 shows the average heat flux q and the jumps at the walls for Kn =
0.01 and the wall temperatures TW0 = 1, TWL = 2. In order to have proper
results, we had to take 104 grid points, the corresponding computing times were
several hours. Again, the jumps are one order of magnitude smaller with the
modified boundary conditions. Also here, the result with 14 moments and modified
boundary conditions matches best with the analytical result. We do not show the
corresponding temperature curves, since all four results have no visible differences
to the analytical solution.

Table 3.
Heat flux q and its jumps q1 − q, qn − q, for the various methods (wall temperatures TW0 = 1,
TWL = 1.1, Kn = 0.1, 103 gridpoints, 5 104 iterations).

q q1 − q qn − q
ET13 analytic −0.02615 0 0
ET13 kin. scheme −0.02501 0.001185 0.001148
ET14 kin. scheme −0.02416 0.0007385 0.0008101
ET13 modified BC −0.02776 0.00008635 0.00007118
ET14 modified BC −0.02597 0.00008583 0.0001344
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In Table 3, we have printed the same quantities for Kn = 0.1, but a smaller
temperature difference, TW0 = 1, TWL = 1.1. Once again, we have a difference
of one order of magnitude in the jumps between the original and the modified
boundary conditions and the 14 moments solution with the modified boundary
conditions is closest to the analytical solution.

6. Conclusions

The kinetic scheme of Le Tallec & Perlat provides a tool to solve moment equations
of kinetic theory. In particular it allows the calculation of boundary value problems
with an arbitrary number of moments. The method is based on half space moments
of the phase density and the boundary conditions for these follow directly from
the boundary conditions for the phase density.

Unfortunately, as was shown, the method is restricted to distances of some
mean free paths only, since the grid size must be considerably smaller than the
mean free path.

Moreover, the results of [1] and the present paper indicate the violation of the
conservation laws for energy and momentum. Clearly, this shades some doubt on
the usefulness of the method which should be studied in greater detail in order
to understand its deficiencies. As was pointed out above, it is probable, although
not sure, that a higher number of moments will improve the results. This will be
considered in future work.

In many cases, one will be satisfied with approximate solutions obtained by
a theory with a low number of moments. We presented a modification of the
boundary conditions which may be used in these cases. The modification seems to
be very natural for the use in moment equations: the discontinuous phase density
at the wall is replaced by a normal solution which agrees with the original phase
density in the moments under consideration only. Here, the conservation of energy
is well fulfilled without further assumptions. The results for the 13 moment case
deviate from the analytical solution due to the approximative character of the new
boundary conditions and one may expect, again, better results for an increasing
number of moments. Calculations with many moments are planned for the future.
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