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Abstract

Based on the Cahn-Hilliard free energy, a thermodynamic model for a reactive binary
mixture of incompressible and miscible fluids is derived with a distributed form of surface
tension. The model describes chemistry, diffusion, viscosity and heat transfer as well as
stresses produced by (and at right angles to) concentration gradients. It allows for a rich
spectrum of processes and some of these are discussed briefly.

Scaling arguments based on experimental data of Abid et al. [1], lead to considerable sim-
plifications. Saffmann-Taylor stability analysis (here extended to interfaces of finite thick-
ness) agrees with the experimental findings of Abid et al. who argued that the buoyant
instability of a reaction diffusion front is controlled by a form of surface tension at the front.
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1 Introduction

Recent experiments [1] on miscible, buoyantly unstable reaction diffusion fronts in Hele-Shaw
cells give an indication that the observed instabilities are governed by a form of surface tension,
a property that is normally associated with interfaces between immiscible fluids. Since an
interface between miscible fluids is not vanishingly thin the stress that corresponds to surface
tension within the medium must be distributed over the region where the concentrations of
different components change. The goal of this article to provide a sound theoretical foundation
for this observation by means of a thermodynamic derivation and analysis of the governing
equations for the process.

In order to emphasize the basic physics, we shall consider a binary reacting mixture, instead
of a more realistic reaction with several species. The fluids used in the experiment are almost
incompressible and we shall restrict the model to incompressible fluids.

The constant mass densities of the two constituents differ and therefore a change in the
concentration, by diffusion and/or reaction, leads to a change in the total density. The mixture
therefore appears to be compressible—it is quasi-incompressible in the sense that density changes
can arise through changes in composition but not through changes in pressure alone [9, 12]. As
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is usually the case for incompressible fluids [13], the pressure does not appear in the density’s
equation of state, but must be considered as an additional variable [9, 12].

Our thermodynamic considerations are based on the free energy of the mixture which con-
tains terms for the energy as well as for the entropy of mixing. For these contributions we adopt
the celebrated Cahn-Hilliard model [5] according to which the energy of mixing depends on the
concentration and its gradient. The latter is known to lead to an effective “surface tension”
which decreases as the gradient decreases [5, 2]. As a consequence, the surface tension of a
typical chemical reaction wave is very small due to its comparatively large thickness. Surface
tension could be measured in [1] only because the difference between the densities of reactants
and products was small enough to ensure that a competing buoyancy-driven instability was also
very small.

The balance laws for masses of the constituents, momentum, and energy do not form a closed
set of field equations a priori, but require constitutive equations for the so-called thermodynamic
fluxes. In this paper, the constitutive equations are derived by means of the classical thermo-
dynamics of irreversible processes (TIP) [7]. The basic assumption is the “local equilibrium
hypothesis” which in our case gives rise to the Cahn-Hilliard expressions for energy and entropy
in non-equilibrium.

In particular, the evaluation of the second law of thermodynamics with the Cahn-Hilliard free
energy, according to TIP, leads to expressions for the stress tensor and the chemical potential
of the mixture, which govern both diffusion and chemistry in the mixture. Moreover, as a
direct consequence of the quasi-incompressibility, the pressure enters the theory as an arbitrary
parameter which must be chosen as additional variable.

As well as the pressure, the stress tensor contains the usual viscous contributions plus a term
which relates to capillary forces. Since the pressure is somewhat arbitrary, it can be redefined (or
normalised) so that the capillary term precisely corresponds to surface tension, i.e. it represents
forces perpendicular to the concentration gradient.

TIP also relates the thermodynamic fluxes to the corresponding “thermodynamic forces”
through linear relations (phenomenological equations). Linear constitutive laws are in accor-
dance with experimental observations concerning diffusion, heat transfer and viscous stresses,
but not chemical reactions. Therefore, the latter are modelled by the Arrhenius law, which is set
up properly so that the positivity of the entropy production due to chemical reaction is guaran-
teed. In particular, it will be seen that an increase in the pressure shifts the chemical equilibrium
towards the denser component (Le Chatelier’s principle), although it does not directly increase
the density by itself.

In general, our approach is a contribution to what is known as Diffusive-Interface Methods
in Fluid Mechanics—see the extensive review by Anderson et al. [2] for a list of references. Most
work in this area is related to immiscible fluids, phase boundaries, etc., which are typical of
systems where surface tension can be expected to play a significant role.

Our results and methods are closest to the work by Lowengrub and Truskinovsky [12], but
differ in the treatment of the pressure as well as in the emphasis on miscible fluids in our
considerations. The paper by Antanovskii [3] served us for inspiration, but our treatment differs
considerably from it, since we exploit the second law more thoroughly and thus avoid heuristic
arguments. To our knowledge the present work is also the first to combine diffusive-interface
methods with flame-like reactions.

Joseph [9] investigated surface tension in miscible fluids experimentally and theoretically. He
added surface tension to the momentum balance but considered the classical diffusion equation
(Fick’s law). As will be seen in the course of our paper, the diffusion may be affected by pressure
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gradients and intermolecular forces. In miscible fluids, however, the influence of the latter will
hardly be seen explicitly, but merely affect the measurement of the diffusion coefficient. Pressure
gradients may cause partial demixing of the constituents, if the density difference is large; with
Joseph’s very small density differences, Fick’s law is indeed appropriate.

Altogether, our model, describing surface tension, chemistry and diffusion as well as viscosity
and heat transfer, allows for a rich spectrum of processes and some of these are briefly consid-
ered, for example the aforementioned influence of the pressure on diffusion flux and chemical
equilibrium. Most of this however, must be referred to later investigations.

The importance of the various processes depends on physical parameters, such as diffusion
coefficient, reaction rate, density difference, intermolecular forces, etc. A proper scaling, based
on the experimental data of [1] allows for a considerable simplification of the equations. The
stability results that were used in [1] are based on the well-known Saffmann-Taylor stability
analysis [16] which is originally applicable at interfaces of vanishing thickness. We shall show
that the same analysis can be used as well in the case of a finite, but small thickness of the
interface.

2 Binary mixture of two ideal fluids

2.1 Ideal fluids

In an incompressible ideal fluid the state variables are independent of pressure. Accordingly
mass density � and specific internal energy u are functions of temperature T alone. However,
because of the well known thermodynamic relation

(
∂u
∂p

)
T

= T
�2

( ∂�
∂T

)
p

+ p
�2

(∂�
∂p

)
T
, the density

must be independent of temperature as well [13] and is therefore a constant.
In an ideal fluid the specific heat cv is assumed to be constant and its specific internal energy

u(T ) is given by

u(T ) = cv(T − T0) + u0 (1)

where u0 is the specific energy at temperature T0. Due to the incompressibility, the Gibbs
equation reduces to T ds = du so that the specific entropy s of the ideal fluid is given by

s(T ) = cv ln
T

T0
+ s0 (2)

where s0 is the entropy at temperature T0.

2.2 Binary mixture

We consider the mixture of two incompressible ideal fluids with the constant mass densities �1 ,
�2 , particle masses m1 , m2 , and specific heats c1v , c2v . Under the assumption that there are no
volume changes due to mixing (excess volume) we can write for the density of the mixture

� = c�1 + (1 − c)�2 (3)

where c is a concentration parameter varying between 1 in fluid 1 and 0 in fluid 2. Obviously,
the partial mass densities of the constituents are given by c�1 , (1− c)�2 . The energy density of
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the mixture is given by the sum of the partial energies plus an extra term which accounts for
the interaction between the constituents,

�u = c�1u1 + (1 − c)�2u2 + Umix (4)

= c�1
(
c1v(T − T0) + u1

0

)
+ (1 − c)�2

(
c2v(T − T0) + u2

0

)
+ Umix.

Similarly the entropy of the mixture is not simply the sum of the two partial entropy densities,
but contains an additional term, the entropy of mixing,

�s = c�1 s1 + (1 − c)�2 s2 + Smix (5)

= c�1

(
c1v ln

T

T0
+ s20

)
+ (1 − c)�2

(
c2v ln

T

T0
+ s20

)
+ Smix.

The entropy of mixing is considered later in section 2.4.

2.3 Energy of mixing

The energy of mixing Umix results from the different intermolecular forces between particles
of different species [15]. We denote the potential between two particles of types α, β by
Vαβ

(∣∣rαi − rβi
∣∣); Vαβ is a function of the distance ξ =

∣∣rαi − rβi
∣∣ between the particles. The

total potential energy of the nα drα particles of type α in the volume element drα and the
nβ drβ particles of type β in drβ is given by

Vαβ

(∣∣rαi − rβi
∣∣)nα

(
rαi

)
nβ

(
rβi

)
drαdrβ.

We now introduce the vectors xi, ξi by

xi = 1
2

(
rαi + rβi

)
, ξi = rαi − rβi

so that

rαi = xi + 1
2ξi, rβi = xi − 1

2ξi and drαdrβ = dxdξ.

Thus, the potential energy of particle pairs α, β with middle point xi in the volume element dx
and distance vector ξi in the volume element dξ is given by

Vαβ(ξ)nα

(
xi + 1

2ξi
)
nβ

(
xi − 1

2ξi
)

dxdξ.

Integration over all values of the distance vector and division by dx gives the potential energy
density at xi stemming from all pairs with middle point in dx, namely

Umix = γαβ

∫
Vαβ(ξ)nα

(
xi + 1

2ξi
)
nβ

(
xi − 1

2ξi
)
dξ with γαβ =

{
1
2 if α = β

1 if α �= β.

The coefficient γαβ guarantees that pairs of the same species do not contribute twice to the
energy.

The potential Vαβ decays rapidly with increasing ξ so that it is reasonable to approximate nα

using the expansion nα

(
xi± 1

2ξi
)
≈ nα(xi)± 1

2ξi
∂nα
∂xi

. Moreover, making use of the concentration
c by means of the relations n1 = �1

m1
c, n2 = �2

m2
(1 − c) and summing over all possible pairs of

species, we find

Umix = ac(1 − c) + 1
2b

∂c

∂xi

∂c

∂xi
+ a11 c + a22 (1 − c) (6)
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with coefficients a, b given by relevant moments of the interaction potentials,

a =
∫ (

�1
m1

�2
m2

V12 (ξ) − 1
2

( �1
m1

)2
V11 (ξ) − 1

2

( �2
m2

)2
V22 (ξ)

)
dξ,

(7)

b = 1
6

∫ (
�1
m1

�2
m2

V12 (ξ) − 1
2

( �1
m1

)2
V11 (ξ) − 1

2

( �2
m2

)2
V22 (ξ)

)
ξ2 dξ.

The final two terms in (6), involving the coefficients aαα = 1
2

( �α

mα

)
2
∫
Vαα(ξ) dξ, can be absorbed

into the energies uα
0 of the single constituents and need not be considered any further.

The coefficient a has the dimension of an energy and the ratio
√

b/a = lcap defines a fun-
damental length scale lcap for capillary forces in the mixture. It should only be of the order of
a few molecular diameters. In particular, between immiscible fluids one would expect to find
only a slightly diffuse interface of approximate mean thickness lcap. The Taylor expansion used
above for nα(·) is likely to prove most accurate, however, when the interface thickness is large
compared with lcap, as it would be at an interface between miscible fluids.

It is worth noting that, according to our simple model, the energy of mixing is independent
of temperature. A similar derivation can be found in Cahn & Hilliard’s celebrated paper [5].
These authors, however, compute the potential energy associated with a single particle, and
not, as we have done, the energy of a pair of particles. In order to arrive at the above result
(6), Cahn and Hilliard had to perform an integration by parts, which appears to be somewhat
artificial and is not needed in our approach. More refined models for the energy of mixing can
be found in [15].

2.4 Entropy of mixing

In order to calculate the entropy of mixing from a simple argument we consider a volume element
dx where we have n1 molecules of fluid 1 and n2 molecules of fluid 2. Under the assumption
that there are as many places in dx as particles, namely (n1 + n2 ), we calculate the entropy of
mixing from the well known Boltzmann formula as

Smix = k ln
(n1 + n2 )!
n1 !n2 !

= −k
(
n1 ln

n1

n1 + n2
+ n2 ln

n2

n1 + n2

)
where k denotes Boltzmann’s constant and we have used the Stirling formula. Again, the number
densities can be related to the concentration by n1 = �1

m1
c, n2 = �2

m2
(1 − c) to obtain

Smix = k
[ �1
m1

c ln
(
1 +

�2
�1

m1

m2

1 − c

c

)
+

�2
m2

(1 − c) ln
(
1 +

�1
�2

m2

m1

c

1 − c

)]
. (8)

2.5 Free energy

The specific free energy of the mixture is given by

f = u− Ts = 1
�

(
c�1f1 + (1 − c)�2f2 + Umix − TSmix

)
(9)

with the free energies of the single constituents f1 , f2 given by

fα(T ) = uα − Tsα = cαv

(
(T − T0) − T ln

T

T0

)
+ uα

0 − Tsα0

and with Umix, Smix given by (6, 8).
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Figure 1: The free energy (10) with (f2 − f1 )/(kT/m) = 0.2 for â = 0, 1, 2.5, 3.

Depending on the strength of the intermolecular forces, the free energy (9) is either convex
or has the form of a double well potential. To illustrate this, we can consider a case having
equal molecular masses and mass densities of the constituents, m1 = m2 = m, �1 = �2 = �, and
ignore the concentration gradients in Umix. We can then write

F =
f − f2
kT/m

=
c(f1 − f2 )
kT/m

+ âc(1 − c) + c ln c + (1 − c) ln(1 − c) (10)

with the abbreviation â = a
�kT/m . In this simplified case, F ceases to be convex (∂

2F
∂c2

≥ 0), if
â ≥ 2. Figure 1 shows the free energy (10) for some values of â. A non-convex free energy allows
for the separation of two phases with different concentrations, i.e. a gap of miscibility [11]. For
very large values of â, when the interaction energy exceeds the thermal energy, the equilibrium
concentrations are given by c ≈ 0, c ≈ 1 and the mixture appears to be immiscible. In the context
of this paper we are interested mainly in fully miscible binary mixtures and shall consider cases
where the interaction energy is dominated by the thermal energy, for which â < 2.

3 Field equations

The thermodynamics of incompressible binary mixtures provides a means of determining the
concentration c, velocity vi and temperature T fields as function of space and time. For this
purpose we have the conservation laws of mass, momentum and energy which must be furnished
with constitutive relations for diffusion flux, mass production rate, heat flux and stress tensor.

3.1 Balance laws

The balances of mass for the constituents 1, 2 read
∂
∂t

(
�1 c

)
+ ∂

∂xk

(
�1 cv

1
k

)
= τ, ∂

∂t

(
�2 (1 − c)

)
+ ∂

∂xk

(
�2 (1 − c)v2k

)
= −τ (11)

where τ is the mass production rate and vαk denotes the centre-of-mass velocity of constituent
α. The mass balance of the mixture is the sum of the partial mass balances and assumes the
usual form

∂
∂t� + ∂

∂xk

(
�vk

)
= 0
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with the centre-of-mass velocity vk of the mixture given by

�vk = �1 c v
1
k + �2 (1 − c) v2k .

If the diffusion flux Jk is defined as

Jk = �1 c(v1k − vk) = −�2 (1 − c) (v2k − vk)

then the equations (11) can be combined to give

ċ = − �

�1�2

(∂Jk

∂xk
− τ

)
,

∂vk
∂xk

= −�1 − �2
�

ċ (12)

in which (·)· = ∂
∂t+vk

∂
∂xk

denotes the material time derivative. The first equation is the evolution
equation for the concentration while the second relates the change of volume to the change in
concentration. Thus, as long as the constant densities of the constituents are different, �1 �= �2 ,
the mixture appears to be compressible—it is quasi-incompressible as described earlier [9, 12].

The balances for momentum and energy of the mixture are assumed to have the same form
as for a single fluid, see [13],

�v̇i −
∂tik
∂xk

= �gi, �u̇ +
∂qk
∂xk

= tij
∂vi
∂xj

. (13)

Here, tij denotes the stress tensor, qk is the heat flux vector and gi is an external body force,
usually gravity.

With (12, 13) we have six equations for the unknowns {T, c, vk}, so that the system appears
to be overdetermined. However, it will be seen that the pressure p enters as an additional
variable. This is normally the case in the theory of incompressible fluids, see [12, 13].

3.2 The second law of thermodynamics

The equations (12, 13) contain quantities which are not a priori related to the fields {T, c, vk},
namely the diffusion flux Jk, the mass production rate τ , the stress tensor tij and the heat
flux qk. In this section we shall exploit the second law of thermodynamics in order to find
constitutive equations for these additional quantities. We shall follow the guidelines of classical
thermodynamics of irreversible processes (TIP), see [7] for a classical survey.

Roughly speaking, we construct a balance equation for the entropy and ensure the posi-
tiveness of the entropy production by an appropriate choice of the constitutive equations. The
starting point is the specific entropy (5,8) which is a function of {T, c} or, by eliminating the
temperature T with the energy (4 ,6), a function of {u, c, χ}, where χ is defined as χ = 1

2
∂c
∂xi

∂c
∂xi

.
Note, that the dependence on χ leads beyond standard classical TIP, where the entropy depends
on equilibrium variables only, and not on gradients. The total differential of the specific entropy
reads (Gibbs equation)

ds =
1
T

du +
(∂s

∂c

)
u,χ

dc +
( ∂s

∂χ

)
u,c

dχ (14)

according to which the temperature T can be defined in the usual way, such that

1
T

=
( ∂s

∂u

)
c,χ

.
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Considering entropy s and energy u to be functions of {T, c, χ} we find from (14)(∂s

∂c

)
u,χ

=
(∂s

∂c

)
T,χ

− 1
T

(∂u

∂c

)
T,χ

= − 1
T

∂f

∂c( ∂s

∂χ

)
u,c

=
( ∂s

∂χ

)
T,c

− 1
T

(∂u

∂χ

)
T,c

= − 1
T

∂f

∂χ
.

Note that by (9) the free energy f is a function of {T, c, χ}. With these relations the Gibbs
equation leads to

�ṡ =
1
T
�u̇− �

T

∂f

∂c
ċ− �

T

∂f

∂χ
χ̇.

Noting that

χ̇ = 1
2

( ∂c

∂xi

∂c

∂xi

)·
=

∂c

∂xi

( ∂ċ

∂xi
− ∂vk

∂xi

∂c

∂xk

)
we can eliminate the time derivatives of u and c by means of the balance laws (12, 13) to get

�ṡ = − 1
T

∂

∂xk

(
qk + �

∂f

∂χ
ċ
∂c

∂xk

)
+

1
T

(
Πδij + tij + �

∂f

∂χ

∂c

∂xi

∂c

∂xj

)
∂vi
∂xj

+ (15)

+
1
T

(
�2

�1�2

∂f

∂c
− �

�1�2

∂

∂xi

(
�
∂f

∂χ

∂c

∂xi

)
− �1 − �2

�1�2
Π

) (
∂Jk

∂xk
− τ

)
where Π denotes the generalized pressure, which is an arbitrary scalar function since the two
terms containing Π cancel each other by means of (12). The generalized pressure will be discussed
below after we have finished discussing the constitutive theory.

It is convenient to introduce the irreversible heat flux Qk, the irreversible stress tensor Pij

and the chemical potential µ as

qk = Qk − �
∂f

∂χ
ċ
∂c

∂xk
,

tij = −Πδij − �
∂f

∂χ

∂c

∂xi

∂c

∂xj
+ Pij , (16)

µ =
�2

�1�2

∂f

∂c
− �

�1�2

∂

∂xi

(
�
∂f

∂χ

∂c

∂xi

)
− �1 − �2

�1�2
Π.

By referring to Qk and Pij as irreversible we mean that only these parts of heat flux and stress
tensor contribute to the production of entropy.

After some rearrangement equation (15) assumes the form of a balance law,

�ṡ +
∂φk

∂xk
= Σ

involving the entropy flux vector

φk =
Qk

T
− µ

T
Jk

and the entropy production rate

Σ = τ
(
−µ

T

)
+

Pjj

3T
∂vk
∂xk

+ Qk
∂1/T
∂xk

+ Jk
∂

∂xk

(
−µ

T

)
+

P〈ij〉
T

∂v〈i
∂xj〉

. (17)

The angle brackets 〈·〉 on the indices i, j denote the symmetric trace-free part of a tensor, such as
P〈ij〉 = Pij − 1

3Pkkδij . According to the second law of thermodynamics, the entropy production
rate Σ must be positive or zero.
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3.3 Phenomenological equations

It is convenient to write the entropy production rate Σ as a sum of thermodynamic fluxes Fa

and thermodynamic forces Xa,

Σ =
∑
a

FaXa ≥ 0,

in which the fluxes and forces are, from (17)

Fa =
{

τ ,
1

3T
Pjj , Qk , Jk ,

1
T
P〈ij〉

}
,

Xa =
{
−µ

T
,

∂vk
∂xk

,
∂1/T
∂xk

,
∂

∂xk

(
−µ

T

)
,
∂v〈i
∂xj〉

}
.

In linear irreversible thermodynamics the positiveness of the entropy production is ensured by
the so-called phenomenological equations [7], by which

Fa =
∑
b

LabXb with Lab positive definite

for each value of a. The phenomenological coefficients Lab must be taken to be functions of the
same variables as entropy and energy, namely temperature T , concentration c, and concentration
gradient ∂c

∂xi
.

In classical irreversible thermodynamics the phenomenological equations are somewhat sim-
plified by the so-called Curie principle, which states, in its simplest form, that thermodynamic
fluxes of tensorial rank n (scalars, vectors, tensors, . . . ) are coupled only to forces of the same
tensorial rank [7]. This statement follows from arguments on isotropy of the body under con-
sideration, and is not strictly true in our case, where the phenomenological coefficients Lab can
depend on the concentration gradient which is inherently not isotropic [14, 12].

However, being interested in the simplest model obtainable from the second law, we do not
consider any cross effects but assume that the fluxes are coupled solely to their correspond-
ing forces. Alternatively, we can argue that the model applies to relatively weak gradients in
concentration, with changes occurring over very many molecular diameters. In this case the
off-diagonal elements of the matrix Lab should, effectively, be zero and the phenomenological
equations then read

Jk = −D
∂

∂xk

(µ

T

)
, Qk = −κ

∂T

∂xk
, Pjj = 3ν

∂vk
∂xk

, P〈ij〉 = 2η
∂v〈i
∂xj〉

. (18)

Here, D is the diffusion coefficient, κ the thermal conductivity, and η and ν are the shear and
bulk viscosity, respectively; all coefficients must be positive.

We did not set up a similar equation for the chemical reaction rate τ since a linear law,
τ = −γ µ

T , is physically correct only close to chemical equilibrium and cannot be used for the
description of flame-like reactions. We shall consider the chemistry in Section 3.5.

To close this section, we examine the chemical potential for our binary mixture of incom-
pressible fluids with the free energy (9). We can write (16)3 as

µ = µ1 − µ2 (19)
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in which we define the separate chemical potentials for the constituents 1, 2 as

µ1 = f1 (T ) − kT

m1
ln

(
1 +

�2
�1

m1

m2

1 − c

c

)
+

1
�1

(
Π +

b

2
∂c

∂xk

∂c

∂xk
+ (1 − c)

[
a (1 − c) − b

∂2c

∂xk∂xk

])
µ2 = f2 (T ) − kT

m2
ln

(
1 +

�1
�2

m2

m1

c

1 − c

)
+

1
�2

(
Π +

b

2
∂c

∂xk

∂c

∂xk
+ c

[
ac + b

∂2c

∂xk∂xk

])
. (20)

Note that it is not imperative to assign the individual terms to the chemical potentials of the
constituents in precisely this way, which, all the same, seems to be the most natural choice. In
particular, µα will reduce to the free enthalpy fα + Π

�α
for a single constituent.

3.4 Pressure and capillary forces

Due to (16,18) the stress tensor reads

tij = −Πδij − �
∂f

∂χ

∂c

∂xi

∂c

∂xj
+ ν

∂vk
∂xk

δij + 2η
∂v〈i
∂xj〉

.

It is evident that Π, introduced in (15) as an arbitrary scalar function, indeed plays the role
of the pressure. Moreover Π can be added as the sixth variable in the set {T, c, vi,Π} and will
be determined by the field equations and boundary conditions for the stress tensor. However,
because of the way that Π was introduced in the theory, we have some freedom over its precise
definition and can decompose Π into the usual interpretation of the pressure p and any arbitrary
scalar function of the other variables, Π = p + Π̂(T, c, χ). One particular choice for Π̂(T, c, χ)
leads to a transparent and sensible representation of the stress tensor. We set

Π = p− �
∂f

∂χ

∂c

∂xk

∂c

∂xk

and introduce the tensor of capillary stresses as

Sij = �
∂f

∂χ

( ∂c

∂xk

∂c

∂xk
δij −

∂c

∂xi

∂c

∂xj

)
. (21)

Since this defintion results in the identity, Sij
∂c
∂xj

= 0, this part of the stress tensor contributes
only forces perpendicular to the gradient of concentration. Thus, Sij describes a distributed
form of the surface tension of any diffusive layer between regions with different concentration.

The complete stress tensor is a sum of three terms, the pressure p, the viscous stresses Pij

and the tensor of capillary stresses Sij

tij = −pδij + Sij + Pij .

Other redefinitions of Π are possible, see [2] for example, but will not be discussed here. Our
choice for the definition of pressure was taken from [3]. However, although that article starts off
with the exploitation of the second law, it does not make full use of its possibilities. Instead it
derives its expression for the tensor Sij based on heuristic arguments from the energy balance
and results in the factor � ∂u

∂χ in place of � ∂f
∂χ . In fact, there is no essential difference between

the two results for our simple model where we have � ∂f
∂χ = � ∂u

∂χ = b, see equations (4,9).
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3.5 Chemistry

In this section we study the chemistry of our model for a binary mixture with the sole reaction

γ′1A + γ′2B � γ′′1A + γ′′2B.

γ′α and γ′′α denote the stoichiometric coefficients for the reactant and the products, respectively;
A and B stand for the components 1, 2. Due to conservation of mass we have

m1 (γ′′1 − γ′1 ) = −m2 (γ′′2 − γ′2 ). (22)

The mass production rate τ of constituent 1 can be written in terms of the reaction rate density
Λ as

τ = m1 (γ′′1 − γ′1 )Λ.

In order to have a positive production of entropy due to chemical reactions, τ(−µ/T ) ≥ 0 must
hold or, with the reaction rate Λ and (19,22),

Λ(A′ −A′′) ≥ 0 (23)

where A′ and A′′ are the chemical affinities, defined as

A′ = m1γ
′
1µ1 + m2γ

′
2µ2 , A′′ = m1γ

′′
1µ1 + m2γ

′′
2µ2 .

As we have said before, a linear law for the reaction rate is appropriate only close to chemical
equilibrium. For flame-like reactions there are good reasons to believe that the reaction rate
density should be of the form

Λ = K
(

exp
A′

kT
− exp

A′′

kT

)
with a positive constant K so that the positivity of (23) is ensured. We make the entropic terms
of the chemical potentials (20) explicit by setting

µ1 = µ̂1 − kT

m1
ln

(
1 +

�2
�1

m1

m2

1 − c

c

)
, µ2 = µ̂2 − kT

m2
ln

(
1 +

�1
�2

m2

m1

c

1 − c

)
(24)

and obtain the well-known Arrhenius law [17]

Λ = K

(
n
γ′
1

1 n
γ′
2

2

nγ′
1+γ′

2
exp

m1γ
′
1 µ̂1 + m2γ

′
2 µ̂2

kT
− n

γ′′
1

1 n
γ′′
2

2

nγ′′
1 +γ′′

2
exp

m1γ
′′
1 µ̂1 + m2γ

′′
2 µ̂2

kT

)
written with the number densities n1 = �1

m1
c , n2 = �2

m2
(1 − c), n = n1 + n2 .

From now on, we shall restrict our attention to the autocatalytic reaction

A + B � 2B

with the stoichiometric coefficients γ′1 = γ′2 = 1, γ′′1 = 0, γ′′2 = 2. This implies that the molecular
masses of the particles are the same, m1 = m2 = m, so that mn = �. The Arrhenius law for
this particular reaction reads

Λ = K
�1�2
�2

(
c(1 − c) exp

µ̂1 + µ̂2

kT/m
− �2

�1
(1 − c)2 exp

2µ̂2

kT/m

)
. (25)
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Figure 2: The function Γ = ln c
1−c + â(1 − 2c) for â = 0, 1, 2, 3, 5.

Let us consider the chemical equilibrium for the mixture so that Λ = 0, or
c

1 − c
exp {−G} =

�2
�1

exp {F + P} . (26)

The latter equation is the law of mass action for the reaction in question where we have intro-
duced the abbreviations

F =
f2 (T ) − f1 (T )

k/mT
=

c2v − c1v
k/m

(
1 − T0

T
− ln

T

T0

)
+

u2
0 − u1

0

kT/m
− (s20 − s10 )

k/m

P =
p

kT/m

(
1
�2

− 1
�1

)
(27)

G =
1

�2kT/m

(
c

[
ac− b

∂2c

∂xk∂xk

]
+

b

2
∂c

∂xk

∂c

∂xk

)
− 1

�1kT/m

(
(1 − c)

[
a(1 − c) − b

∂2c

∂xk∂xk

]
− b

2
∂c

∂xk

∂c

∂xk

)
.

The occurrence of the concentration gradients in G complicates the interpretation of the law of
mass action (26) but we can state some principal properties nevertheless:

• A higher value of F shifts the equilibrium towards larger values of the concentration, which
stabilizes constituent 1. The value of F is mainly determined by the energy and entropy
constants uα

0 , sα0 .

• An increase of the pressure p shifts the chemical equilibrium towards the denser component
—this is a reflection of Le Chatelier’s principle.

• The influence of the intermolecular forces on the chemical potential is contained in the
function G. Neglecting the concentration gradient and the difference in the densities we
have G = −â(1 − 2c). Figure 2 shows the function Γ = ln c

1−c + â(1 − 2c) for several
values of the parameter â = a

�kT/m . In equilibrium Γ = F + P , and we can read off from
the figure that a larger value of â stabilizes the single constituents. For â ≥ 2, where the
free energy is non-convex, there are three possible equilibrium concentrations for a certain
range of F + P . Only the outer concentrations, however, correspond to stable equilibria,
while the intermediate value for the concentration belongs to an unstable case.

12



3.6 Summary of results

With the results of the last section we have a closed system of field equations for the variables
T , c, p, vi. The equations read

ċ = − �

�1�2

(∂Jk

∂xk
− τ

)
,

∂vk
∂xk

= −�1 − �2
�

ċ

�v̇i +
∂p

∂xi
− ∂Sik

∂xk
− ∂Pik

∂xk
= �gi (28)

�cvṪ +
∂Qk

∂xk
= Pij

∂vi
∂xj

+
�1�2
�

(h2 − h1 )ċ.

Here, we have written the energy balance (28)4 in terms of the variables; cv is the heat capacity
of the mixture, given by

�cv = c�1 c
1
v + (1 − c)�2 c2v.

The heat release due to changes of the concentration is proportional to the difference of general-
ized enthalpies h1 , h2 of the constituents, which are given below in equation (30). It is interesting
that only the irreversible parts of heat flux and pressure tensor appear in this equation.

The constitutive equations for mass production rate τ , diffusion flux Jk, irreversible heat
flux Qk, tensor of capillary stresses Sij and tensor of viscous stresses Pij read

τ = −K̂

(
c(1 − c) exp

µ̂1 + µ̂2

kT/m
− �2

�1
(1 − c)2 exp

2µ̂2

kT/m

)
Jk = −D

∂

∂xk

(µ1 − µ2

T

)
, Qk = −κ

∂T

∂xk
, (29)

Sij = b
( ∂c

∂xk

∂c

∂xk
δij −

∂c

∂xi

∂c

∂xj

)
, Pij = ν

∂vk
∂xk

δij + 2η
∂v〈i
∂xj〉

.

The positive coefficients K̂, D, κ, ν, and η must be determined from experiments, the theory
is not able to say anything about their values or their dependence on the variables {T, c, α}.
The same is true for the coefficients of capillary forces a and b which follow from intermolecular
potentials by (7).

Finally we give the generalized enthalpies of the two constituents which read

h1 = u1 +
1
�1

(
p− b

2
∂c

∂xk

∂c

∂xk
+ (1 − c)

[
a(1 − c) − b

∂2c

∂xk∂xk

])
, (30)

h2 = u2 +
1
�2

(
p− b

2
∂c

∂xk

∂c

∂xk
+ c

[
ac + b

∂2c

∂xk∂xk

])
.

The chemical potentials µα, µ̂α are given by (20,24).

4 A simplified model for the Hele-Shaw cell

In this section we reduce our model for the description of processes in Hele-Shaw cells. In
particular we shall use the experimental data of [1] in order to weigh the relative importance of
the several contributions to the equations.
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4.1 Isothermal processes and simplified chemistry

Our main interest in this paper lies in the interplay between chemical reaction and surface
tension. In order to focus attention on this behaviour, we introduce some assumptions which
will lead to considerable simplifications.

Isothermal processes:
When the heat release of the reaction is small, or the specific heat cv is large, or the heat
conductivity is large, one can expect very small variations in temperature. The temperature
can then be assumed to be constant, T = T0, and the energy balance (28 )4 can be discarded.
Indeed, this condition is met very well in the experimental Hele-Shaw cells of [1], where the heat
of reaction is almost immediately absorbed by the walls.

Full reaction:
We assume that the energy and entropy constants u0

α, s0
α are large compared to the contributions

of pressure and capillary forces in µ̂α (24), so that µ̂1 (T0) 	 u1
0 − T0s

1
0 , µ̂2 (T0) 	 u2

0 − T0s
2
0 .

Furthermore we presume that µ̂2 (T0) 
 µ̂1 (T0) so that the first term in the mass production
rate (29)1 dominates and τ reduces to

τ = −Kc(1 − c) where K = K̂ exp
u1

0 + u2
0 − T0

(
s10 − s20

)
kT0/m

(31)

Now, the reaction rate K and the chemical equilibrium are independent of pressure and cap-
illary forces. Equation (31) describes an autocatalytic reaction from constituent 1 (c = 1) to
constituent 2 (c = 0). Constituent 1 alone is stable, but as soon as a bit of constituent 2 is
added, a reaction will start and proceed until constituent 1 is fully consumed.

4.2 Diffusion flux and miscibility

In this section we discuss the diffusion flux. In particular we shall define a miscible system and
introduce an assumption on the dependence of the diffusion coefficient D on the concentration.
To simplify notation we set

p̂ =
p

�1kT0/m
, â =

a

�1kT0/m
, b̂ =

b

�1kT0/m
(32)

and obtain the diffusion flux from the derivative of the chemical potentials as

Jk = −D
k

m

[
1

c(1 − c)
∂c

∂xk
− 2â

∂c

∂xk
− b̂

∂3c

∂xi∂xi∂xk
+ (33)

+
(
1 − �1

�2

)(
∂p̂

∂xk
+ 2âc

∂c

∂xk
+ b̂

[
∂c

∂xk

∂2c

∂xi∂xi
+ c

∂3c

∂xi∂xi∂xk
− ∂2c

∂xk∂xi

∂c

∂xi

])]
.

Insertion of this flux into the balance of the concentration (28 )2 gives the specific form of the
Cahn-Hilliard equation for our model. The first term, 1

c(1−c)
∂c
∂xk

, stems from the entropy of
mixing, and therefore refers to the entropic part of the diffusion flux. This term forbids a total
demixing of the constituents (c = 1 or c = 0) and, if it dominates, leads to a perfectly mixed
fluid—as long as there are no chemical reactions to be sure.

According to the first term in the second line a pressure gradient may produce a diffusive
flux if the densities of the two constituents differ. This gives rise to some demixing along the
pressure gradient. Total demixing, of course, is prohibited by the entropic diffusion.
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Figure 3: The function d(c) for â = 0, 0.5, 1, 1.5, 1.99.

All other terms are related to the capillary forces and also lead to demixing to some degree.
Summarizing we can say that there are entropic forces (the first term) and energetic forces

(pressure gradient and capillary forces) acting against each other. Total demixing is forbidden by
the specific form of the entropic contribution to the diffusive flux. Furthermore it becomes clear
from (32) that the relative weight of the energetic forces decreases with increasing temperature.

A miscible system can be defined as a mixture where the entropic forces dominate.
The diffusion coefficient D is allowed to be a function of the concentration. Since we want to

consider a reactive process where the concentration goes from c = 1 to c = 0, it is unpractical to
choose D = constant. since we then had to face divisions by Zero in the entropic contribution.
To overcome this problem we set from now on

D
k

m
= D

c(1 − c)
1 − 2âc (1 − c)

with D = const. (34)

This choice produces the usual form of Fick’s law, Jk = −D ∂c
∂xk

, in the absence of capillary forces
and density differences. Moreover, with (34), we have only one single coefficient, D, which relates
diffusion flux Jk and concentration gradient ∂c

∂xk
, and it is this coefficient which is measured in

experiments—just because an experimentalist will assume Fick’s law in this form. To illustrate
the influence of the interaction energy â on D figure 3 shows the normalized diffusion coefficient

d(c) =
c(1 − c)

1 − 2âc(1 − c)
1 − 0.5â

0.25

for several values of â. It is only for values of â > 1 that this function differs considerably from
the case without interaction energy â = 0. In a miscible system, where diffusion is dominated
by the entropic effects, we have â ≤ 1 and the influence of the interaction energy manifests itself
in a smaller diffusion coefficient D but not in its dependence on concentration.

4.3 The flame

We now introduce scales and dimensionless variables which will enable us to weight the differ-
ent terms in the equations against each other. We assume the flame process to be the most
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dominating and this gives rise to the following scales:

t = t̂ t0, t0 =
�1

K
, xi = x̂iL, L =

√
D

/
K, vk = v̂k

L

t0

The time scale t0 is the inverse of the reaction frequency, and the length scale L is in the order
of magnitude of the thickness of a flame. The concentration is dimensionless of order 1 and must
not be scaled; accordingly the concentration gradient is of order 1/L.

We shall be interested in cases where the densities of the constituents differ only slightly.
Therefore we introduce a small parameter ε� by

ε� =
�1
�2

− 1.

We adopt the values for our scales and coefficients from [1] where we find

L

t0
= 2 × 10−4 m

s ,
L2

t0
=

D

�1
= 1.4 × 10−9 m2

s , ε� = 6 × 10−4

hence

L = 7 × 10−6m, t0 = 0.035s.

Moreover, we find in [1] an approximate value for the surface tension,

σ =
∫

b
∂c

∂x

∂c

∂x
dx ≈ b

L
= 5 × 10−6 N

m
. (35)

As we have said in Section 2.3, the length scale of the capillary forces is given by lcap =
√

b/a.
This length must be expected to be of the order of some molecular diameters, lcap 	 5×10−10m.
Using the density and molecular weight of water we have �1

k
mT0 	 1.4 × 108 J

m3 (T0 = 300 K)
and therefore

b̂

L2
=

b

�1L2kT0/m
≈ 5 × 10−9, â =

b̂

l2cap
≈ 1. (36)

With â ≈ 1, interaction energy and thermal energy are of the same order of magnitude. And
indeed, a value â = O(1) is what we expect for miscible fluids in which the molecular forces play
a significant role.

With the above dimensionless parameters, the equations for volume change and concentration
read

∂v̂k
∂x̂k

= − ε�
1 + ε�c

(
∂c

∂t̂
+ v̂k

∂c

∂x̂k

)
,

∂c

∂t̂
+ v̂k

∂c

∂x̂k
= −(1 + ε�c)

(
∂Ĵk

∂x̂k
+ c(1 − c)

)
the dimensionless diffusion flux reads

Ĵk = − ∂c

∂x̂k
+

b̂

L2

c(1 − c)(
1 − 2âc(1 − c)

) ∂3c

∂x̂i∂x̂i∂x̂k
+

+ ε�
c(1 − c)

(1 − 2âc(1 − c))

[
∂p̂

∂x̂k
+ 2âc

∂c

∂x̂k
+

b̂

L2

(
∂c

∂x̂k

∂2c

∂x̂i∂x̂i
+ c

∂3c

∂x̂i∂x̂i∂x̂k
− ∂2c

∂x̂k∂x̂i

∂c

∂x̂i

)]
.
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Our above approximations show that both, b̂
L2 and ε�, are so small that the influence of the

corresponding terms in the diffusion flux on the concentration profile can be ignored. Keeping
only the leading order terms we obtain drastically simplified equations,

∂v̂k
∂x̂k

= 0,
∂c

∂t̂
+ v̂k

∂c

∂x̂k
=

∂2c

∂x̂k∂x̂k
− c (1 − c) . (37)

With no parameters in (37) referring explicitly to the intermolecular forces, it seems that the
latter affect neither flame structure nor speed. This is not true, however, since, as we have
pointed out in Section 4.2, the intermolecular forces affect the measurement of the diffusion
coefficient and are thus implicit in the scaling.

The density difference is assumed to be so small that the quasi-incompressibility can be
ignored, and the mixture appears to be incompressible. Accordingly, if the reactant is at rest
initially, and no external forces act on it, the mixture will remain resting while the flame travels
through.

If one accounted for the difference in the densities, one finds that the flame will push or drag
the unburned reactant with the velocity ε�vF where vF is the flame speed. This would lead to
an O(ε�) correction, and these are ignored in the concentration equation. It follows that the
flame is described by Fisher’s equation [6, 10, 4]

∂c

∂t̂
=

∂2c

∂x̂k∂x̂k
− c(1 − c). (38)

It is well known, that this equation, also known as KPP equation [10], allows traveling wave
solutions with dimensionless speed vF = 2 which connect the constant states c = 0, c = 1.

4.4 The Hele-Shaw cell

Next, we consider the momentum equation for the geometry of the Hele-Shaw cell. In a Hele-
Shaw cell the flow is confined between two parallel plates. The distance l between the plates is
rather small, and one can assume that the flow is purely two-dimensional. With the coordinates
chosen such that the plane of the Hele-Shaw cell is spanned by xα = {x1, x2} = {x, y} we have
for the velocity

vi = {vα(xα, z), 0}

and the momentum equation reads

�v̇α +
∂p

∂xα
− ∂Sαi

∂xi
− η

∂2vα
∂xβ∂xβ

− η
∂2vα
∂z∂z

= �gα.

Under the assumption that the typical length scale λ in the plane is much larger than the
distance of the plates l, we have

η
∂2vα

∂xβ∂xβ
+ η

∂2vα
∂z∂z

=
η

λ2

∂2vα
∂xβ∂xβ

+
η

l2
∂2vα
∂z∂z

	 η

l2
∂2vα
∂z∂z

= η
∂2vα
∂z∂z

where xα and z are suitable dimensionless coordinates. Thus, the friction with the walls is
dominating while the friction inside the fluid plays no role. It is well known that a flow between
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Figure 4: Volume element dV for determining the jump condition.

parallel plates will develop a parabolic profile (Poisseuille flow) which can be written with the
mean velocity vα = 1

l

∫ l
0 vαdz as

vα = −6vα
[(z

l

)2
− z

l

]
.

Introducing this expression into the momentum equation and averaging along the plate separa-
tion l yields [16, 8]

�

(
∂vα
∂t

+
6
5
vβ

∂vα
∂xβ

)
+

∂p

∂xα
− ∂Sαβ

∂xβ
+ 12

η

l2
vα = �gα ; (39)

in which the bars indicate mean values. Here, we have assumed that the concentration is
independent of the coordinate z, so that ∂

∂zSαz = 0.
As we have said before, the flame travels through the fluid without inducing any significant

flow velocity. Moreover, the fluid is not pushed by a pressure gradient and the only external
force on the fluid is related to buoyancy. Since the density difference is very small, we can expect
only small velocities and henceforth ignore the non-linear term in (39).

Surface tension will only play a role in the reaction zone of thickness L. Thus we can consider
two regions of single fluids, connected by jump conditions which we shall determine now. To
this end we consider a small volume element around the reaction zone of size dV = 2lLR dφ
where 2R dφ is the arc length of the curve c = 0.5 with the radius of curvature R, and L is the
thickness of the reaction wave. L must be chosen so that the concentration gradient at R±L/2
is negligible. In fact L should strictly be reinterpreted as an intermediate asymptotic parameter
that is large compared to the thickness of the reaction wave but small compared with the radius
of curvature R and the plate separation l. Although the results below can be written more
formally in these terms, we shall simply take concentration gradients to be zero at R ± L/2
and continue to think of L as measuring the thickness of the reaction wave, albeit as a slight
overestimate, with L 
 R. The value of L does not appear in the final result.

Figure 4 shows the projection into the {x, y} plane; n denotes the normal to the curves of
constant concentration which is also the direction of propagation, and τ denotes the tangent
vectors. In a frame where nα = {0, 1} one finds τα = {± cos dφ, sin dφ} 	 {±1,−dφ}. We write
for the surface tension

Sαβ = b

(
∂c

∂xγ

∂c

∂xγ
δαβ − ∂c

∂xα

∂c

∂xβ

)
= b

(
∂c

∂n

)2

(δαβ − nαnβ) = Σ(δαβ − nαnβ)
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The jump condition follows by integration of the momentum balance over the volume element
and subsequent scalar product with nα. Under the assumption that all quantities do not change
considerably along the arc length we find after division by 2lR dφ

p2 − p1 − σ

R
= nα

∫ 1

2

[
�
∂vα
∂t

+ 12
η

l2
vα − �gα

]
dL +

(
p1 + p2

2
− 1

L

∫ 1

2
pdL

)
L

R
(40)

where σ denotes the total surface tension (35),

σ =
∫ 1

2
ΣdL.

The Hele-Shaw approximation is only valid for curvatures l/R 
 1 and the flame thickness L is
much smaller than the distance l, so that L/R 
 1 and the last term on the right hand side of
(40) can be ignored.

In immiscible fluids the thickness of the interface is so small (a few molecular diameters)
that also the first term on the right is negligible. In our case of a reaction zone, however, this
term may become important and must be considered. It is worth comparing the gravitational
contribution �gL with the surface tension term σ

R . Indeed, the gravitational force can only
strictly be neglected for radii of curvature R 
 σ

�gL = 7.3 × 10−5m. This is still much larger
than the the thickness of the reaction wave.

For further simplification we assume the same viscosity for the two fluids [1] and no variation
of velocity inside the reaction zone. Being interested in a stationary flame process, we can ignore
the time derivative and find finally the jump condition across the reaction zone of thickness L
as

p2 − p1 − σ

R
= 12

ηL

l2
nαvα − nα

∫ 1

2
�gαdL.

4.5 Saffmann-Taylor stability analysis

With the potential of gravity U = −gαxα = gx1 the momentum equation for the single fluid in
the stationary case can be written as

∂p

∂xα
+ 12

η

l2
vα = −�

∂U

∂xα
with

∂vα
∂xα

= 0.

Following the classical work of Saffmann & Taylor [16], we introduce the velocity potential φ by

vα =
∂φ

∂xα
with

∂2φ

∂xα∂xα
= 0. (41)

Since �, η = constant in the single fluid the momentum equation is easily integrated,

p = −�U − 12
η

l2
φ.

We are interested in small disturbances of a plane flame travelling through a fluid at rest in
direction nα = ±{1, 0}, with the disturbance of the interface given by

ξ = a exp [iky + ωt] ,
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ξ refers again to the line c = 0.5. Therefore, the location of the boundaries of the reaction zone
is given by x1,2 = ξ ± L

2 and the interface condition reads

12
η

l2
[φ1 − φ2 ] + (�1 − �2 )gξ + σ

d2ξ

dy2
− 12

ηL

l2
dξ

dt
= −�1 + �2

2
gL +

∫ 1

2
�gdL. (42)

Note, that curvature is given by 1
R = −ξ′′/(1 + ξ′2)3/2 	 −ξ′′, where the choice of sign follows

from figure 4, and that the velocity of the fluid at the disturbed interface is given by dξ
dt . The

integral on the r.h.s. gives the weight per unit area of the reaction zone and does not change
when the reaction zone is displaced.

For the potentials one finds

φ1 = φ0
1 − aω

k
exp [iky − kx + ωt] , φ2 = φ0

2 +
aω

k
exp [iky + kx + ωt]

as the solutions of (41)2 which give the velocity dφ
dx = ξ̇ = ωa exp [iky + ωt] at x = 0 and for

which the disturbances vanish at infinity [16]. The constants of integration φ0
α are set equal to

zero in the work of Saffmann & Taylor without discussion, but are important here in order to
ensure the validity of the jump condition for the undisturbed interface (ξ = 0). One finds

12
η

l2
[
φ0
1 − φ0

2

]
= −�1 + �2

2
gL +

∫ 1

2
�gdL,

so that the weight of the reaction zone is absorbed in the constants φ0
α. The jump condition

(42) gives for the disturbance

12
η

l2
ω

k
(−2 − Lk) − σk2 + g(�1 − �2 ) = 0.

Being interested in waves with wavelengths λ = 2π/k large compared to the distance l, we can
ignore the friction term Lk and arrive at the final result for the dispersion relation

ω = (�1 − �2 )
gl2

24η
k − σl2

24η
k3. (43)

This, indeed, is the celebrated Saffmann-Taylor result, which therefore holds also in case of a
finite but thin interface between two fluids. Instabilities will develop when ω is positive, i.e. if
�1 > �2 , corresponding to lower density of the product, as is the case in the experiments of Abid
et al. [1]. The experiments showed a wavelength of approximately 1cm and assuming that the
instability is governed by the fastest mode,

ω∗ =
σl2

12η
k∗3, k∗ =

√
(�1 − �2 )

g

3σ
, (44)

it was possible to measure the surface tension (35). By changing the angle α of the Hele-Shaw
cell against the vertical, so that the effective gravitational acceleration is g cosα, Abid et al.
found experimentally that the wavelength λ = 2π/k is proportional to 1/

√
g cosα. And it is this

proportionality which allows the conclusion that the instability is governed by surface tension.
If for instance a curvature dependent flame speed were to be of controlling importance [18], one
would have expected a proportionality to 1/(g cosα).
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5 Conclusion

In this paper we have developed a consistent thermodynamic model for a reactive binary mix-
ture of incompressible fluids with distributed surface tension effects. The model allows for the
description of a wide range of processes, and this article has only provided a glimpse of this vari-
ety. In particular, we have used our model for the description of experiments in Hele-Shaw cells
[1] with buoyancy driven instabilities. Our theoretical findings reinforce the interpretation by
Abid et al of these experimental results and provide them with a sound theoretical framework.

The measured values of the parameters a and b, which together account for the intermolecular
forces, match expectations very well. In fact, a noticeable aspect of the intermolecular forces
requires that thermal energy cvT and the intermolecular potential energy Umix (4) should be
of comparable importance. That is, the dimensionless parameter â = a/�kT/m is of the order
O(1). We have shown that the value â ≈ 1 arises naturally from the measurement of b and the
presumed range of the interaction forces, see equation (36).

As long as â < 2, the two fluids are miscible for all concentrations (i.e. without a gap of
miscibility, see section 2.5), and Fick’s law of diffusion prevails in most cases. The influence of
the intermolecular forces on the diffusion is hidden in the measurement of the diffusion coeffi-
cient, and could only be more fully qualified by detailed measurements of concentration profiles.
However, if the density difference is larger, chemical equilibrium and diffusion will be strongly
influenced by changes in the pressure and its gradient.

Investigations of other problems based on the model provided in this article are planned for
the future.
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