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The moment method of the kinetic theory requires boundary conditions for the moments.
It is not possible to derive these in an easy manner from the boundary conditions for the
phase density. The conservation laws of mass, momentum and energy give only five relations
between the moments and the properties of the wall. Additional boundary conditions may be
determined from the minimax principle for the entropy production which was recently proposed
by Struchtrup & Weiss [1]. These ideas are outlined for the case of 13 and 14 moments and
Maxwell's boundary conditions for the phase density which lead to temperature jumps and
velocity slip at walls. In particular, one-dimensional stationary heat transfer between two walls
at rest is considered. The temperature jumps at the walls are shown to depend on the values of
all moments in front of the wall. The results obtained by the minimax principle are compared
with results obtained for the same problem by a minimum principle for the global entropy
production and by the so-called kinetic schemes [2].

1 Introduction

It is well known that the laws of Navier-Stokes and Fourier are not able to properly describe processes in
gases with large Knudsen numbers. One successful attempt to describe these rarefied gases is Grad’s moment
method which has inspired the development of the growing field of extended thermodynamics [3]-[12]. In the
theory of moments and in extended thermodynamics the state space is not spanned by the fields of density
o0, velocity vj and temperaturd alone [13] but is enlarged by non-equilibrium quantities e.g. the pressure
deviator pjy, the heat fluxg, and other quantities, the so-called higher moments, which do not have an
intuitive physical interpretation.

Moment methods and extended thermodynamics derive first order partial differential equations in space-
time for the variables that span the state space. Thus, one will need a set of initial and boundary conditions
in order to formulate and solve a proper initial-boundary value problem. For a long time the formulation of
boundary conditions for the higher moments - those without intuitive interpretation - has not been possible.

Recently Struchtrup & Weiss proposed a method for the determination of boundary conditions for station-
ary processes [1]. In their method the boundary conditions for higher moments follow from the postulate that
the maximum of the local entropy production becomes minimal in stationary proc@3sesnethod is purely
phenomenological and no additional input is needed from kinetic theory. Therefore it may be also used in
phenomenological theories of extended thermodynamics.
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** e-mail: wolf0931@thermodynamik.tu-berlin.de
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In the framework of the kinetic theory of gases, however, the formulation of boundary conditions does
not present a problem in principle - Maxwell already proposed boundary conditions for the phase density and
there are other models which describe the interaction between wall and gas more accurately [14, 15].

A temperature jump and a slip are observed at the wall, which depend on the details of the wall-
gas interaction and may be calculated within the kinetic theory [14, 15]. The phenomenological method
of Struchtrup & Weiss does not exhibit these features and the aim of the present paper is to connect the
phenomenological method with the boundary conditions for the phase density. In particular we shall calculate
the temperature jump and the slip velocity as functions of the moments.

In a previous paper the minimax principle was applied to a simple one dimensional heat conducting
problem without temperature jumps at the walls [1]. Here we want to recalculate this problem with consid-
eration of temperature jumps. Because we are dealing with higher moment theories, it is necessary to derive
generalized equations for the temperature jump. Also generalized equations for the velocity slip are derived,
which will be examined in future work.

Recently, LeTallec & Perlat [16] have developed a method - c#ieetic schemesto solve the moment
equations on the kinetic level. They solve the Boltzmann equation for a phase density that depends on space
time only through the moments and maximizes the entropy [4, 7]. This procedure allows the use of the
boundary conditions for the phase density in their numerical calculations. This method was used in [2] for
the calculation of stationary heat transfer with 13 and 14 moments and we shall compare our present results
with those of [2].

The minimax principle of Struchtrup & Weiss competes with the postulatettieaglobal entropy produc-
tion becomes minimatiue to Prigogine [18, 19]. In the case of stationary heat conduction without temperature
jumps, the latter gives unsatisfactory results for all Knudsen numbers [1]. This is not so when jumps are
taken into account. In that case the results are unphysical for small Knudsen numbers but at large Knudsen
numbers there are cases where the results from the global postulate are reasonable.

The paper is organized as follows: Sect. 2 gives a short survey on the moment method in kinetic theory and
Maxwell’'s boundary conditions for the phase density. Moreover, the equations of extended thermodynamics
with 13 and 14 fields are given. In Sect. 3 and 4 we derive the equations for temperature jumps and velocity
slip for an arbitrary number of moments. These are specialized to the simple case of extended thermodynamics
with 13 moments in Sect. 5. Section 6 deals with stationary heat transfer in the 14 moment case. Here, we
use the afore mentioned principles for the entropy production in order to solve the differential equations. The
paper ends with our conclusions. Some calculations of minor importance will be found in the appendix.

2 Basic equations
2.1 Kinetic theory

We consider mon-atomic ideal gases. The objective of the kinetic theory of gases is the determination of the
phase density (x,t, ¢;) which gives the number density of particles in the phase space elelxéatHere,

X ,t denote space and time variables, respectively, sl the velocity of a particle of mass. The phase
density is governed by the Boltzmann equation [14, 15],

of of

ﬁ"'ck%:*y/(f) ) (1)

where the collision ternd”” (f) accounts for the change of the phase density due to collisions among patrticles.
Once the phase density is known, one may calculate its moments, for instance the massogénsity
momentum densityv; and the energy densitye, given by

3 k m
g:m/fdc, gvi:m/cifdc, QEZEQET+§v2:E/C2de. )

In these definitionsk is Boltzmann's constant; denotes the barycentric velocity of the gas dndenotes
the temperature, which is thaefinedby the mean kinetic energy of the particles.
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2.2 Field equations of extended thermodynamics with 13 and 14 moments

In moment methods one assumes that the state of the gas is satisfactorily described by a set of moments of
the phase density

uA:L/um(q)fdc.

Extended thermodynamics of 14 variables choases m {1, C;, 3C2,C; C;,, 3C?Ci, C*} whereC; = ¢;—v
is the peculiar velocity. This choice corresponds to the moments of the peculiar velocity

_ _ . 3 k__m 5
g—m/fdc, O—m/C.fdc, ngT—Z/Cfdc,

P =m [ CuGytde, =3 [clofde,  a=m [t ) de.

3

where we have introduced the pressure temgorthe heat fluxg; and the non-equilibrium part of the full
trace of the fourth momenA\. fy; denotes the local Maxwellian, viz.

e xr 4)

and the trace of the pressure tensor defines the pressure

1 k
p= épii = QET .
The equations for the moments follow by multiplication of the Boltzmann equationgjthnd subsequent
integration over velocity space. The resulting equations do not form a closed system of partial differential

equations for the moments since they contain quantities which ara padri related to the moments. Here,
a closure assumption is required, and it is obvious that a phase density of the form

f (& t,0) =F (Ua (X, 1), ) (%)

serves the purpose. A solution of this type is called "normal solution”, and there are several methods to obtain
it. Grad found his normal solution by an expansion around local equilibrium where the phase density is a
Maxwellian. In the last years the method of maximizing the entropy [4] became more and more popular [7].
This method is equivalent to extended thermodynamics and we refer the interested reader to the monograph
of Miller & Ruggeri for a detailed discussion of these topics [5]

The normal solution corresponding to (3) follows either from Grad’'s method [3] or from entropy maxi-
mization [4, 5, 7] and subsequent linearization around local thermal equilibrium as

m4
+
1200k4T4

m? m?3
+ A—
8ok2T2™ ~ 120k3T3

m? m? im _,
+—— 0 G C — —— _ = .
20k2T2 Pk G Ci ka-rzchk (1 5kTC ))

f1a = fu (1 AC? AC*— (6)

The moment equations read

do + 0ovk

ot Ox

=0, (7)

o, ovi 1lop 1 8p<ik> _
o % ax T oo Toom Y ®

1 Angular brackets denote the traceless part of a symmetric tensor.
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3 k /0T oT aqk 8Uk
o~ = o |+ K by == =
ng (3'[ Vk 5Xk) OXc Pwi % 0, 9)
Mgy , P vk 494 Iy _
ot DX 5 3)(1) + 2pk(| a = —ooPgjy, (10)

5‘qi + 8qi + 5 koT +kl8p<ik> +}3A

%ok T2Pmox T m ox 6%

7 k oT Pty opk 7 _ Ow T  Ov 2 Ow _ (11)
ép(ik)aa— 0 R"‘g iaixk"'Engka"'EQkaixi ——gaQQia
% +vk% + SE% + klp(kl)% _ 8% ap<k|>
ot OXy m OXg m 19)¢ o OX (12)
+285qka—T + ZA% = —gaQA
m "X 3 O 3 ’

whereq is a constant that follows by calculation of the collision production for Maxwell molecules. The first

three equations are the equations of balance for the conserved quantities mass, momentum and energy.
The set of equations (7)-(12) reduces to Grad’s 13 moment equations, if ond sef and omits the

last equation.

3 Boundary conditions

For the calculation of boundary value problems with the systems given above, one needs boundary conditions
for most of the moments. This is a problem - especially in the high moment theories - because in an experiment
only few boundary values can be controlled. Furthermore, in a rarefied gas temperature jumps at the walls
and a velocity slip can occur.

3.1 Maxwell's boundary conditions

The most simple model for the velocity and the temperature jump is due to Maxwell [14, 15]. He assumed
that the fractiord of the incident particles is thermalized at the wall and leaves the wall with a Maxwellian
distribution.@ is called accommodation coefficient. The fracti{dn— 8) of the emerging particles is reflected
elastically at the wall.

We denote the velocity of a particle iy and the velocity of the wall by, such that the particle has
the velocityC\V = ¢; — vV in the frame where the wall is at rest. Moreover, we choose the normal vector
n; of the wall so that it points into the gas. In this manner we ha@&" < 0 for the incident particles and
nCY¥ > 0 for the particles that leave the wall.

Furthermorefy (CiW,xi,t) denotes the phase density in the gas close to the wall. For our purposes it is
convenient to writdy as a function of the tangential veloci§"’ — n,C¥n; and the normal velocity, C\"
asfy (G — nC¥ni,nkCY¥, %, t). In an elastic collision, the tangential velocity remains unchanged, while
the normal velocity changes its sign. Such we have the phase defisifi€¥’ — n.Cni,ncC¥,x,t) , for
the incident particlesn(C¥ < 0) andfy (C\Y — nC¥ni, —nCYV, %, t) for the elastically reflected particles
(nCY > 0), respectively. In the following, for simplicity of notation, we suppress the tangential velocity as
well as space and time in the list of argumentsypfand write the phase density at the whlaccording to
Maxwells boundary conditions as

_ Ofw + (1 — 0) fn (—nCY) , GV >0
F= (13)
fn (nkCQ’V) , nkC,lN <0.
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Herefy, is the Maxwellian of the thermalized particles,

3
m _.m_c2
fw =fm (Qw,Tw,’UiW) = %1 / 2KTor e Aty Cw . (14)

Tw denotes the temperature of the wall amgl is the density of the thermalized particlesy has to be
determined so as to ensure that the wall does not accumulate particles, a condition which may be written in
the form

m/ cVnfdc= —m/ cVncfdc. (15)
nCY>0 nCY <0
We introduce the relative velocity, or slip velocity
Vi = vk — o, (16)
which is parallel to the wall since there is no gas flow through the wall
Vkng = 0. (17)

One aim of this paper is the determination\6f

In (15) we insert (13), substituten,C¥ — nyC¥ and introduce the peculiar velocity of the particles
C = CiW — Vi with ngCy = nkCQN, because of (17). The mean value @f vanishes by definition so that
J Cknifnde = 0 and the condition (15) simplifies to

m/ CYVnefwde = m/ Cenifndc . (18)
nCY >0 nCi >0

4 Temperature jump and slip
In this section we derive equations for the temperature jdmp Ty and the velocity slipv; at the wall.
These follow from the jump conditions for the tangential force and the heat flux at the wall.
4.1 Tangential force
The tangential forcg, = (pi,- — NPk nk) n; acting on the wall is determined by the phase derfsity
fi :m/(ci —nickn) g nifdc,
while the tangential force on the gas follows from the phase defigity
ti = m/(ci —niceng) g njfndce .

Both are equal due to Newton'’s third law and we evaluate this condition in the rest frame of the wall where
¢ = CW. with (13) we obtain

m/ (S —nCdn) iy [Ofw + (1 — ) fy (—miGY)] de+
NG >0

+m (G —nc'n) ¢¥nyfyde = m/ (G —nig¥n) CVnfudc.

nCY¥ <0

Again, we substitute-nCY — nCY in the second term of the first integral and B¥ny = Ccnk. We
introduce the peculiar velocitg; = C\V —V; in the integrals withfy and obtain with (18) and the definition
of the pressure tensor (3an equation for the determination 9f, viz.
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1-94
—_— (pij — N p,-knk) n = m/ (CiW -V —n Cﬁ’vnk) Cjan fwdC

0 nkCQN >0 (19)

—m (Ci —Cknkni)Cj nijdc.
nkaZO

Note that the tangential force vanishes in the ¢asd), - there are no shear stresses at an elastically reflecting
wall.

4.2 Energy flux

The normal part of the energy flu} J c?cifdc is continuous at the wall, a condition which we may write in
the rest frame of the wall as

o CZCVny [fw + (1 — 0) fy (—1G)] de+

2 nkCl)NzO
m c2C¥ndyde = ™ / C2C¥nyfydec.
2 Jncv<o 2

By means of the same substitutions as above this equation reduces to

1-6 m m
5 (kK + Vi Py k) = > CaClnfwde — V20— Cnefwde
nCY>0 nCY >0
m
-= (C2+2CV;) Crnifnde
2 nkaZO

where we have used (18) and the definitions of the pressure tensor and the heat §ud8kliminateV 2
by means of the scalar product of (19) with and obtain

1-6
5 (20K + Pyery Vi ) i = m/ C2ClVnfwde — V; m/ cVcndwde

nkCQ"’ZO n«CV >0 (20)
—m CZCknkadc—Vim/ CiCkncfnde.
nj CiZO niCiZO

This equation will be used for the determination of the temperature jump. Note that an elastically reflecting
wall - 6 =0 - is adiabatic, i.eqxng = 0.

4.3 Equations for temperature jump and slip

It is an easy task to calculate the integrals over the Maxwellian distribution in (18, 19, 20), see Appendix A.
For further simplification we decompose the pressure tensor into its irreducibleppgarésmdp,;, and define
half-space moments df; by

M, = m/ C#Cy,---Cifndc. (21)
nC >0
Thus, we may write the condition for conservation of mass (18) as

1 /2 [Kw ..
2\/;Qw F_Hknk- (22)

This equation serves for the elimination of the dengify in the conditions for the shear stress and the heat
flux (19, 20) which now read

1-46

o (Pay = NiPgon ) Ne = —ViHdne — (65 — niny) neH
(23)
1-6 KTy
5 (206 + Py Vi ) i = 4?\NHkOnk — Hyme — ViHgn, .

We shall proceed with the evaluation of the equations (23).
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5 Grad’s 13 moment phase density

The aim of this section is the determination of temperature jump and slip velocity in case that Grad’s 13
moment density is appropriate for the description of the gas. This is the case in slowly varying processes
with flat gradients.

5.1 Phase density and boundary conditions

Grad considered 13 moments to be relevant, the depsitije velocityv;, the temperaturd, the pressure
deviatorp;, and the heat fluxj. By means of an expansion in Hermite polynomials he obtained the phase
density [3][5]

m?2 m?
f13 = fM (l + WDQHCI Cy — quCk (l — gﬁc )) s (24)

wherefy, is the local Maxwellian (4). The same functiésy follows from (6) by settingA = 0.
With (24) the conditions (23) for shear stress and heat flux read

2—10 _ 1
9 (p<ik> — N p(jk)nj) e = kT <|k>n| Nk 5 (Cli — Nig nj) )
(25)
2—46 1 k 3 1
o (CIk + 2p(kr>vr> Nk \[\/ T [29 —T(Tw—-T)+— (Tw - 2T> Poiky Ni Nk — Evj QJ} :

The calculation of the half-space momentsfgfis outlined in Appendix B.

5.2 Temperature jumps

We consider one-dimensional stationary heat transfer in a gas at rest between two walls of distute
thatv; =o!V =0 andpjy = 0. In this case (25)is identically fulfilled and (25) reduces to

2—-0 |m 1 m
Tw-T="T 5= 2
w 9 \/;29:; e kM (26)

an equation that relates the temperature jump at the wall to the heat flux. Due to the energy balance (9) the
heat flux is constant in this case,

g = gknk = const
and the field equation for the heat flux (11) reduces to Fourier's law for Maxwell molecules, viz.

15k2 _dT
4 m2 dx

We denote the temperatures of the gas - not the temperature of the wall! - at the left and the right wall by
T(x=0)=ToandT (x =L) = T, respectively. With these boundary conditions we obtain from (27) the
temperature function between the two walls as

T= \/TO2+ (T2 -T8)

accordingly the heat flux is given by

=—a(g . (27)

(28)

l—\><

15K T2 T3

8m2 alL

(29)
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This would be the solution of the stationary heat flux problem, if the temperafyrasd T, were prescribed.

But Top andT, are the temperatures of tigasat the walls and we are not able to prescribe these temperatures.
Rather we may control the temperature of #alls, Ty, and Ty, . Therefore we need a relation betwebn

and Ty, or betweenT, and Ty, . These follow from equation (26) which relates the temperature difference
between wall and gas to the heat flux as (note, that the normal vectors on the two walls point in opposite
directions)

2—-60 /m 1 m 2—-60 | 1 m
Tw, —To= =~ /=2 — [ — Tw —TL ==/ = —y =k .
Wo 0 > \/; QO% KT Ok 5, Tw L 20 20 % KT, Ok Nk (30)

The pressur@ is constant in the process under consideration, see Eqn. (8). In (30) we introduce the heat flux
(29) and dimensionless temperaturesTby T /Ty, to obtain

1—Af0:_2—9\/?15an5—Af02 | fWLA—szz—e\/?lsanE—Afg' 31)
To 0 V216 7, T o V216 7

kT2 - A
The constanKn = @ is a Knudsen number. For gively, = 1 and Ty, (31) has to be solved for

To, T. numerically in order to obtain the temperature (28) and the heat flux (29) which we may write in
dimensionless form as

T=/T2+ (T2 - d

5%, 4= ——
p %TWO

The temperature jumps (31) depend on the values of the accommodation coeffi@edt the Knudsen
numberKn: there are large jumps for
i.) small values of the accommodation coefficiéni.e. reflecting walls
ii.) large Knudsen numbeisn, i.e. mean free paths which are comparable to the distarafethe walls.

This can be seen in Fig. 1, where the temperature is drawn for different values of the accommodation
coefficient in a dense gakif = 0.001) and a rarefied ga&if = 0.1). The wall temperatures af’éND =1
andTy, = 2.

= —%SKn (T2-T2) . (32)

2.0 2.0
0=1

1.8 Kn =0.001 1.8 Kn = 0.1 0=1
A 1.6 0=0 A L6 0=0
T T

14 1.4 7

1.2 1.2

0=0,0.001, 0.005, 0.01, 0.02, 0.05, 1 0=0,0.2,04,0.6,0.8, 1
1 1
0 0.2 0.4 R 0.6 0.8 1 0 0.2 0.4 R 0.6 0.8 1
X X

Fig. 1. Temperaturél versus space coordinate

Chapman & Cowling [14] find for the temperature jump

2—-6 ,0T
u'l —

Tw—T=
w 0 ox’

wherel = g%ﬂ/% denotes the mean free path amdis a number of order unity. We may identity by

combining (26) and (27),
,_ 15x

= =1.0413.
322
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5.3 Slip

In this section we derive a formula for the velocity slip. We consider an isothermal shear flow withy,
Pgkyni Nk = 0 under the assumption that the heat flux is perpendicular to the dlowg; n;n;. Now, the jump

conditions (25) reduce to
2—0 |7 [KT PeixyNk
Vi = —— /54—
0 2V m p

1 1 6 kT
Ok Nk *Ep<kr>Vrnk 55 9\/>9 mV

It follows that the slip velocityV; is proportional to the shear stress at the wall. Egn.(88)responds to

(33)

(26) for the temperature jump. If we insert the Navier-Stokes payy = — 52 g;’“ we find
0
Vi = 2— 9 Vi
0 an>
with u = == = 1.10 7 and one finds the same equation in the book by Chapman & Cowling [14].

2V/2
From (33} we conclude that the process is isothermal only, if the power of the shear stress is removed

by a heat flux. In this paper we do not consider a shear flow problem in detail; the equations for the slip
velocity are derived for later use.

6 Stationary heat transfer in extended thermodynamics with 14 fields

In this section we consider extended thermodynamics with 14 fields where the state space is enlarged by the
non-equilibrium partA of the full trace of the fourth moment. Now, the phase density is given by (6).

In the remainder of the paper, we restrict the argument to the case of stationary heat transfer in a gas at
rest. Thus we have vanishing velocity and no slip. Similar problems with non-vanishing velocity, e.g. Couette
flow, are more cumbersome, see [17], and may be considered in future work.

6.1 Temperature jump

In one-dimensional stationary heat transfer in a gas at rest we have from ({12} 0,V; = 0 and the
jump condition (23) is identically fulfilled while the jump condition for the temperature 2B)duces to
1-96 kT
=5 20k = 4?WHk°nk — Hne . (34)

HQ, H! are half space moments ff; which are calculated in Appendix B as

kT
i \f\/ ( 120ka>n’
[T’
Hil = 2@\/7 ( 0 kT>n+qi,
2—91\/? [fm .14
Tw—T _ 20 pV2Via** " z0pk

T 1 A
T 1o0nkT
120pkT

so that (34) reduces to

(35)

The temperature jumpyw — T depends on all moments (temperatiirepressurep, heat fluxgx and fourth
momentA) in front of the wall in the 14 moment case.
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6.2 Field equations

We consider the field equations (7)-(12) for one-dimensional stationary heat transfer. Here, all time derivatives
and the velocity vanish. Thus, the mass balance (7) is identically fulfilled and the energy balance (9) reduces to
0“ = 0. Equation (10) now read% % = —op11y and accordinglyp;y vanishes. The balance of momentum

(8) gives the constancy of the pressupes const and this allows us to introduce the same dimensionless
quantities as above, viz.

)'{:5, 'i' T A: kA ,
L TWo pETWo
" 3
k LT
kT, 1 \/ m Twe
@:M:?’ Q:L’ Kn:mTO.

There remains the following simple system of ordinary non-linear differential equations

5d7 1dA 2 g df 1 A .
- _ 4+ Z —= - =_ — =
20% "6 dR © BT dR 4K, qf Andd=const (36)

For a given Knudsen numbéin (i.e. given pressure), the solution of (36) requires three boundary conditions.
In an experiment, however, we can control only two quantities, viz. the temperatwsesnd Ty, of the
walls [1].

The jump conditions (35) relate the wall temperatures and the values of the moments in front of the walls,
denoted byTy, Ag and T, A, respectively. In dimensionless form we find the relations

~ . 1 -
\/7 T()q + %AO A \/7 TLq + —AL
Twp — A T, . (37)

1 A Com 1 A

1207, 1207,

With these boundary conditions, the system (36) could be solved numerically, if the heqtvilere known.
g enters these equations as a parameter. Indeed, we need one additional boundary value for the heat flux.
In an experiment, however, it is impossible to prescribe the heataftaithe two temperatures of the walls
independently.

Thus, additional assumptions are needed for the determination of the heat flux. For heat transfer without
temperature jumps Struchtrup & Weiss [1] have determined the heat flux from the postulate thakimeim
of the local entropy production becomes minimal in stationary proce¥geshall use the same method and a
similar one, which assumes that thbal entropy production becomes minimal in stationary procefkgls
[19]. The results of both methods will be compared to calculations with so-called kinetic schemes [2].

For given values'fwm 'T'WL andd the equations (36) and (37) were solved numerically. Note, that not all
choices of the heat flux lead to realistic results. We must require

Tw, <To<TX) <TL<Tw .

Indeed, for given vqlueiwo, TWL' Kn and @, these inequalities hold only within a small inter{@hin, Gmax)
of values ford. For Tw, = 1, Tw, = 2, andéd = 1, the table below gives the appropriate values|f, Gmax-

Kn Qmax Qmin
0.1 -0.26436 -0.30705
0.01 -0.050519 -0.051682

We have defined temperature as a measure for the kinetic energy of the gas, see (2), but the notion of
temperature in non-equilibrium is not clear, see [20] for discussion and the introduction of an appropriate
thermodynamic temperature.
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In order to find the relation to extended thermodynamics with 13 moments, we eliminfiten (36),

15 .dT 21 ,..d [~dT
g= —ZKnT ax +?Kn qT& [Tdf(] .

(38)

For small Knudsen numbers, the second term on the r.h.s. may be ignored. Thus (38) reduces to Fourier's
law (27). In the case of small Knudsen numbers, the 13 field theory is sufficient for a proper description of
stationary heat transfer.

6.3 Kinetic schemes solutions

Stationary heat transfer with 14 moments was also considered in [2] by means of the so-called kinetic schemes
[16]. The results of [2] are not fully satisfactory since the heat flux is not a constant but jumps at the walls -
so that the energy conservation law is violated. It is therefore imperative to compare the results of [2] with
the numerical solution of (36), (37), which has a constant heat flux at the walls by construction.

Kn=01 q=-0.303569 Kn=001 §=-0.0515221
2
18
16
X
14
1.2
1
0 0.2 04 A 06 0.8 1 0 0.2 0.4 2 0.6 0.8 1
X
Kn=01 §=-0.303569 Kn=001 §=-0.0515221
. 015!
kinetic schemes + ET14 (mod)
1.2
0.1
1 ': 0.05
A | A o :
0.8 :
ET14 0.05 i
0.6 01 |
0.4 -0.15 ;
0 0.2 0.4 2 0.6 0.8 1 0 0.2 0.4 2 0.6 0.8 1

Fig. 2. Comparison of kinetic scheme results with solution of (36), (37) vﬁ'im =1, wa = 2 (ET14) and with modified wall
temperatures (ET14 (mod)). The curve ET13 shows the corresponding solution of (32). Left clumf:1. Right columnKn = 0.01,
all curves lie on top of each other.

As examples we consider the case of full accommoda#ienl, with wall temperature?w0 =1 fWL =2
and Knudsen numbetsn = 0.1, Kn = 0.01.

The kinetic scheme calculations with 1.00Kn(= 0.1) and 10.000 Kn = 0.01) grid points provide a
heat flux in the interiog {Kn = 0.1) = —0.303569 andj {Kn = 0.01) = —0.0515221, respectively. In order to
compare the kinetic scheme results with the solution of the equations (36), (37), we have solved the equations
for the same values a@f. Note, that in this case no additional boundary conditions are needed, since the value
for g follows from the kinetic scheme solution. If we cannot rely on these, however, the vatyenott be
determined by an additional entropy principle, see below. The results of the kinetic scheme and the equations
(36), (37) for the same values gfdre shown in Fig. 2.
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For Kn = 0.1 (left column) there are marked differencesTirand A in the intervalx € {0,0.3}. These
are due to the above mentioned problems of the kinetic scheme with conservation of energy at the walls. In
order to find a measure for the error, we have computed - by (37) - new wall temperatures from the kinetic
scheme data and foun‘ﬁ,\,o = 0.97453 fWL = 2.00428. With these modified boundary data, the solution of
(36) gives exactly the kinetic scheme solution. Thus, at this Knudsen number, the kinetic scheme introduces
an error of approximately 3% in the boundary conditions.

For the smaller Knudsen numbkn = 0.01 the difference of the kinetic scheme and the present solution
is very small. Here, the modified temperatures Bgg = 0.99600 andTy, = 1.99842 and the corresponding
curves agree very well (right column of Fig. 2). Indeed, in the figures all curves lie on top of each other. The
most remarkable difference is found in the values/ofit x = 0 with Agnum = 0.104705 for the numerical
solution andAgs = 0.16231 from the kinetic scheme. Moreover, only the latter has the steep descént of
atx = 1. However, these differences have no influence on the results for the temperature which - due to the
small Knudsen numbdfn = 0.01 - agrees very well with the 13 field solution (32).

We conclude that the kinetic schemes are not correct in the interesting case of large Knudsen numbers,
but introduce an error at the boundaries, see [2] for a detailed discussion. Thus, the kinetic schemes results
cannot serve as a proper benchmark for the present problem. However, they may approximately give the
proper results, and we shall therefore still compare our results with those of the kinetic scheme in the next
sections.

6.4 Entropy productions

Let us remember that the previous solution of (36), (37) was based on the vajueonf the kinetic scheme
calculations. Now we consider the two afore-mentioned principles for the entropy production which will
allow us to findg.

In order to apply the entropy production principles, we need the local entropy production density (per
unit volume) which is given by [5]

$= —k/ln ;.y (f)dc, (39)

where 1y is the volume of a cell of phase space. In the case of stationary heat transfer with 14 moments we
obtain in dimensionless form

1 A2
180K, T4

4

e
15K,

q2
3 + (40)

Note, thaty is an approximation of the entropy production, where only quadratic contributions in the non-
equilibrium quantities) and A are taken into account.

While there is no production of energy and momentum at the walls - heat flux and tangential stress are
constant - there is a production of entropy at the walls [15]. For the following we assume that this contribution
(a production density per unit area) does not influence the behavior of the gas between the walls. Thus, we
shall consider only the entropy production (40).

6.5 Global principle for the entropy production

The application of the global principle for the entropy production works as follows:

1. Choose the parameters which are given or controllable, i.e. the wall temper‘AEw;é’va, the Knudsen
numberKn and the accommodation coefficietht

2. Choose a value for the heat flgx ~

3. Solve the boundary value problem (36) with (37). This yields the fi€l¢k d) A()?; Q).
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4. Calculate the entropy production densiy(X; §) and compute the global entropy production (per unit
area)

1
Sa@= [ SR,
0
5. Return to 3.) and changg Proceed until mif S (§)] is found.

According to the global principle, the heat flux corresponding to [rﬁi@t (Q)] is assumed to be measured
in an experiment. Results will be presented below.

6.6 Minimax principle for the entropy production

The application of the minimax principle for the entropy production works as follows:

1. Choose the parameters which are given or controllable, i.e. the wall temperﬁmré’m, the Knudsen
numberKn and the accommodation coefficight

. Choose a value for the heat flgx ~

. Solve the boundary value problem (36) with (37). This yields the fi€l¢ q) , A (X; Q).

4. Calculate the entropy production densﬁyk; g) and compute its maximum

w N

Zmax(8) = max[ 2 (%:@)] -
5. Return to 3.) and changg Proceed until mif Smax(§)] is found.

According to the minimax principle, the heat flux corresponding to [rﬁimax(fl)] is assumed to be the
one that is found in an experiment.

6.7 Results

Again, we consider the case of full accommodatiéns 1 with wall temperaturegﬂw0 =1, 'wa = 2 and
Knudsen numberkn = 0.1, Kn = 0.01 .

Figure 3 shows the results fétn = 0.1. In the left column we compare the results from the minimax
principle @minimax = —0.310263) with the results from the kinetic scheme calculations of Sect. 6.3, while the
right column shows the results from the global principigeba = —0.29207) in comparison with the kinetic
scheme. The pictures in the first row show the temperature, including the dashed temperature curve of the 13
field case (32). The latter - due to the large Knudsen number - differs from the other three temperature curves
which stem from the 14-moment case. Again, we find differences between the results which are small in case
of the temperature but clearly visible in casesfwhere the kinetic scheme and the global principle predict
a decreasing curve, while the minimax principle predicts an increasing curve. Thus, the qualitative agreement
between the result of the global principle and the kinetic scheme is better then the agreement between the
results from the minimax principle in comparison to the kinetic scheme.

We have also used the corrected wall temperatures of Sect. 6.3 and found a good agreement between the
kinetic scheme solutiofifks = —0.303569 and the result of the global principl@gmbm = —0.29207) with
decreasing), while with the minimax prinCipl€@minimax = —0.31023§ A is increasing.

The dimensionless fields and A are of order unity for this large Knudsen number so that the approx-
imation (40) for the entropy production is not proper. The results from both principles can only give an
indication and therefore we do not discuss the finer details as the existence of two local maxima for the
entropy production.

Moreover, we like to emphasize that the kinetic scheme results - due to the violation of conservation laws
at the walls - should not be overestimated. In particular they cannot be employed to decide which of the two
entropy principles should be preferred.
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Figure 4 shows temperatuie and entropy productiol’ for the casekn = 0.01 where the quadratic
entropy production (40) is appropriate. Here, the temperature curves of the minimax principle, kinetic scheme
and 13-moment match very well. The corresponding heat fluxgsimax = —0.0516442 gks = —0.0515236,

G153 = —0.0516414 - differ by less then 0.3%. The result from the global principle, however, differs by about
5%: Ggioba = —0.0490105. Differences can be found in the valueglaitx = 0 with ﬁOminimaX = —0.00555326,
Aoglobal = 2.20706, Ags = 0.17626

Kn=01 §=-0.310263 Kn=01 §=-029207
2 2
1.8 1.8
A16 .16
T T
14 14
121 = 12}~
" Kinetic schemes “ Kinetic schemes
1 1
0 0.2 0.4 )2\ 0.6 0.8 1 0 0.2 0.4 )/(\ 0.6 0.8 1
Kn=01 {=-0.310263 Kn=01 §=-0.29207
1.25 kinetic schemes 16
i 14}
0.75 '
12 kinetic schemes
A o5 T B ——
0.25 minimax
' 0.8
0
0.6
-0.25
04
0 0.2 0.4 Q 0.6 0.8 1 0 0.2 0.4 ~ 0.6 0.8 1
Kn=0.1 Kn=0.1
0225 [7 0.25
02} kinetic schemes
k 0.2
0.175
N A
5 015 2 o1s
0.125 " Kinetic schemes
0.1 0.1 .
0.075
s 0.05
0 0.2 0.4 Q 0.6 0.8 1 0 0.2 04 I 0.6 0.8 1

Fig. 3. TemperatureT, fourth momentA and entropy productiort for Kn = 0.1. Left column: solution according to the minimax
principle in comparison to solution of kinetic scheme. Right column: solution according to the global minimum principle in comparison
to solution of kinetic scheme. Also the temperature curve for the analytic solution with 13 moments (32) is shown.

The global principle favours a solution with an additional temperature jump at the left which is accom-
panied by a sharp increase in the entropy production. The large entropy production at the very left allows for
a smaller entropy production at the other space points, where the gas is closer to equilibrium. The minimax
principle does not permit this behavior but leads to a solution where the entropy productions at neighboring
space points are more balanced. These findings are the same as in [1] for the case without jumps.
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0.06 Kn=0.01
0.05 minimax
. 004
2 0.03
0.02
0.01

minimax, kinetic schemes+ ET13

0 0.2 0.4 2 0.6 0.8 1 0 0.2 0.4 " 0.6 0.8 1

Fig. 4. Temperaturel and entropy productior for Kn = 0.01. Solutions according to the minimax principle, the global minimum
principle, kinetic schemes, and analytic solution for 13 moments (32).

For smaller Knudsen numbers the global principle leads to increasingly bad results with a sharp increase
of the temperature at the left while the minimax principle agrees very well with the 13 field result, which is
appropriate for small Knudsen numbers, see (38).

In summary we must state that the minimax principle gives reasonable resu#tf famudsen numbers
while the global principle fails for smakn.

7 Conclusions

In this paper we have set up equations which relate temperature jump and slip at a wall to the values of the
moments inside the gas. These were used for the solution of the stationary heat transfer problem for the 13
and the 14 moment case. While for the 13 moment case no additional boundary conditions are necessary,
the 14 moment case requires an additional boundary condition for the heat flux which was determined from
the minimax principle for the local entropy production and the minimum principle for the global entropy
production.

Our results indicate that the global principle should not be used: its results are wrong at low Knudsen
numbers; most probably the reasonable results for large Knudsen numbers are coincidental.

The minimax principle gives good results fall Knudsen numbers. In particular for smélh it agrees
with the analytical solution for the 13 field case. For large Knudsen numbers, it does not give the same
predictions as the kinetic scheme of [2]. This may be due to the inaccuracies of the latter but there are also
reasons to have some doubt about the minimax results. Indeed, forkarghe non-equilibrium quantities
q and A are not small but of order unity in dimensionless form. Thus, the entropy production (40), which is
quadratic inqg and 4, does not give the proper entropy production - clearly this causes an error. Here, one
should rely on a numerical computation of the entropy production integral (39).

We state again that 14 moments will not be sufficient for la€geso that the corresponding results have
a restricted physical meaning. It is not clear, which and how many moments one will need for the proper
description of the gas in case of large Knudsen numbers. According to our experience with the moment
method and extended thermodynamics the moment number should be much bigger than 14. In particular, one
has to expect the formation of boundary layers at the walls, which are only weakly pronounced in the case
of 14 moments, where they stem from the non-linearities in the moment equations. Thus, we may expect
proper results only in case of a larger moment number. Once these are obtained we may compare with results
from Monte Carlo methods or molecular dynamics. Calculations of the heat transfer experiment with higher
moment numbers are in preparation. We are confident that these will give better insight into the nature and
usefulness of the minimax principle for the entropy production as well as in the properties of the kinetic
schemes.

AcknowledgementsH.S. gratefully acknowledges support by the European Community through the TMR network "Asymptotic methods
in kinetic theory” (ERB FMBX CT97 0157).
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A Half-space moments of the Maxwellian

This appendix is devoted to the calculation of the half-space-moments of the Maxwellian, which are defined
by

W =m [ C¥G,Gfude, (41)
nCi >

wherefy is the Maxwellian phase density

3

_ o m _m 2
fo = = . 42
MTm\ 27kT e (42)

With the dimensionless velocity = |/5+C and the direction vector
v =G /C = {cospsiny, singsind, cosv};

wheren;v; = cosy, we find

kT r+5 oo 2r  pm/2 .
hi i = 93(> / e X x2 2y / / Vi, - - - i, singddd
T m x=0 ©=0J9=0

2kT\'*2 I (r + 30
hiy.oi, 0 <m> (\/7?2)“1--4“ . (43)
Here, we have introduced the abbreviation
1 2 pm/2
|i1~-in = — / / Viy ** " Vi, Sinﬁdﬁdtp . (44)
21 Jy=0 Jo=0
We proceed with the calculation of the integrals for various valuas. of
Forn = 0 we obtain easily
1 2 pm/2
= —/ / sinddydyp =1,
27 J =0 Jo=0
so that we have for the scalar half-space moments
2kT\" I'(r+3
h"=po <) rlr+s) (45)
m NZ3

The direction of the normat; is the only distinguished vector in the calculation of the half-space moments.
Thus we must have for the vector integral

1 2r  pm/2
lj = 7/ / 4 Sin19d’l9d<p =0 .
2r »=0 J9=0

Scalar multiplication withn; gives

1 2r  pm/2 1
= —/ / cosy sinddidy = =
21 J p=0 J9=0 2

and we find the vectorial moments as

C (KT +2)
h/ —Q(m) N ni . (46)

The tensorial integral has the form
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=0 J =0

1 2 /2
lj = —/ / Vi Vj sindddydy = yn; n + B4 ,
2w 7 9
where the coefficients follow by scalar multiplication withn; andd; as+ =0 andg = 1/3 so that

b= (2T) L)
ij = © m NG

For the integral with three indices we find the representation

G - (47)

1 27

w/2
|ijk = — / ViV g singdddy = yn; N nk+6(ni5jk +nj5ik +nk5ij) s
21 J 5=0.J9=0
where the coefficients follow by multiplication with njne andn; dy, respectively. We obtain

1 1 1
7+3ﬁ:21 and v+55=§ sothatf=—y=_

8
and
r okT\"™*2 I'(r +3)
ik = 0 W 78\/7? (ni 5jk +n; bik + nkéij —nin nk) . (48)
The fourth order integral has the representation
lig = o (60 + 6y + il O ) +ymmnehy +

+0 (ni N O N nk5j| +nin 5jk +n nkdi + nn Ok + Ny 5” ) .

Multiplication with nyn;neny, nin;dw and g o yields 5 =y =0 anda = 1/15 so that

2kT\"™2 1 (r +7)
i = 0 (m) ?\/7?2 (85 Gt + O + i O ) - (49)

B Half-space moments for 13 and 14 moments

In extended thermodynamics of 14 fields one finds the phase density
2 m3 ) m4
+ - +_
80k?2T?2 A 120k3T3 AC 1200k4T4
m? m? im
+———D;i / - 1— = —— 2
29k2T2p<Jk>CJ Ck gk2T2 quk ( 5 kTC ))

which reduces to Grad's phase density ibr= 0. The half-space moments of this function are defined by

AC*—

f14 = fM (1

H,

ig--in

=m C¥C,---C frqdC (50)
nCi >0

and may easily be expressed in terms of the half-space moments of the Maxwellian which we have calculated
in Appendix A. We obtain

Hr — hr + m2 Ahr m3 Ahr+1 + m4 Ahr+2
i T M T g a2 S i T 1038 Tain T 1p0pkATA S Harin
m? m? 1 m
+29k2T2 p<J'k>hir1---inik - ka-rzqkhirl---ink + gigk3-|-3 QKhir:.l.ink . (51)

The half-space moments of Grad's phase density followZor 0.
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