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The moment method of the kinetic theory requires boundary conditions for the moments.
It is not possible to derive these in an easy manner from the boundary conditions for the
phase density. The conservation laws of mass, momentum and energy give only five relations
between the moments and the properties of the wall. Additional boundary conditions may be
determined from the minimax principle for the entropy production which was recently proposed
by Struchtrup & Weiss [1]. These ideas are outlined for the case of 13 and 14 moments and
Maxwell’s boundary conditions for the phase density which lead to temperature jumps and
velocity slip at walls. In particular, one-dimensional stationary heat transfer between two walls
at rest is considered. The temperature jumps at the walls are shown to depend on the values of
all moments in front of the wall. The results obtained by the minimax principle are compared
with results obtained for the same problem by a minimum principle for the global entropy
production and by the so-called kinetic schemes [2].

1 Introduction

It is well known that the laws of Navier-Stokes and Fourier are not able to properly describe processes in
gases with large Knudsen numbers. One successful attempt to describe these rarefied gases is Grad’s moment
method which has inspired the development of the growing field of extended thermodynamics [3]-[12]. In the
theory of moments and in extended thermodynamics the state space is not spanned by the fields of density
%, velocity vi and temperatureT alone [13] but is enlarged by non-equilibrium quantities e.g. the pressure
deviator p〈ij 〉, the heat fluxqi and other quantities, the so-called higher moments, which do not have an
intuitive physical interpretation.

Moment methods and extended thermodynamics derive first order partial differential equations in space-
time for the variables that span the state space. Thus, one will need a set of initial and boundary conditions
in order to formulate and solve a proper initial-boundary value problem. For a long time the formulation of
boundary conditions for the higher moments - those without intuitive interpretation - has not been possible.

Recently Struchtrup & Weiss proposed a method for the determination of boundary conditions for station-
ary processes [1]. In their method the boundary conditions for higher moments follow from the postulate that
the maximum of the local entropy production becomes minimal in stationary processes. This method is purely
phenomenological and no additional input is needed from kinetic theory. Therefore it may be also used in
phenomenological theories of extended thermodynamics.
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In the framework of the kinetic theory of gases, however, the formulation of boundary conditions does
not present a problem in principle - Maxwell already proposed boundary conditions for the phase density and
there are other models which describe the interaction between wall and gas more accurately [14, 15].

A temperature jump and a slip are observed at the wall, which depend on the details of the wall-
gas interaction and may be calculated within the kinetic theory [14, 15]. The phenomenological method
of Struchtrup & Weiss does not exhibit these features and the aim of the present paper is to connect the
phenomenological method with the boundary conditions for the phase density. In particular we shall calculate
the temperature jump and the slip velocity as functions of the moments.

In a previous paper the minimax principle was applied to a simple one dimensional heat conducting
problem without temperature jumps at the walls [1]. Here we want to recalculate this problem with consid-
eration of temperature jumps. Because we are dealing with higher moment theories, it is necessary to derive
generalized equations for the temperature jump. Also generalized equations for the velocity slip are derived,
which will be examined in future work.

Recently, LeTallec & Perlat [16] have developed a method - calledkinetic schemes- to solve the moment
equations on the kinetic level. They solve the Boltzmann equation for a phase density that depends on space
time only through the moments and maximizes the entropy [4, 7]. This procedure allows the use of the
boundary conditions for the phase density in their numerical calculations. This method was used in [2] for
the calculation of stationary heat transfer with 13 and 14 moments and we shall compare our present results
with those of [2].

The minimax principle of Struchtrup & Weiss competes with the postulate thatthe global entropy produc-
tion becomes minimal, due to Prigogine [18, 19]. In the case of stationary heat conduction without temperature
jumps, the latter gives unsatisfactory results for all Knudsen numbers [1]. This is not so when jumps are
taken into account. In that case the results are unphysical for small Knudsen numbers but at large Knudsen
numbers there are cases where the results from the global postulate are reasonable.

The paper is organized as follows: Sect. 2 gives a short survey on the moment method in kinetic theory and
Maxwell’s boundary conditions for the phase density. Moreover, the equations of extended thermodynamics
with 13 and 14 fields are given. In Sect. 3 and 4 we derive the equations for temperature jumps and velocity
slip for an arbitrary number of moments. These are specialized to the simple case of extended thermodynamics
with 13 moments in Sect. 5. Section 6 deals with stationary heat transfer in the 14 moment case. Here, we
use the afore mentioned principles for the entropy production in order to solve the differential equations. The
paper ends with our conclusions. Some calculations of minor importance will be found in the appendix.

2 Basic equations

2.1 Kinetic theory

We consider mon-atomic ideal gases. The objective of the kinetic theory of gases is the determination of the
phase densityf (xi , t , ci ) which gives the number density of particles in the phase space elementdxdc. Here,
xi , t denote space and time variables, respectively, andci is the velocity of a particle of massm. The phase
density is governed by the Boltzmann equation [14, 15],

∂f
∂t

+ ck
∂f
∂xk

= S (f ) , (1)

where the collision termS (f ) accounts for the change of the phase density due to collisions among particles.
Once the phase density is known, one may calculate its moments, for instance the mass density%, the

momentum density%vi and the energy density%ε, given by

% = m
∫

f dc , %vi = m
∫

ci f dc , %ε =
3
2
%

k
m

T +
%

2
v2 =

m
2

∫
c2f dc . (2)

In these definitions,k is Boltzmann’s constant,vi denotes the barycentric velocity of the gas andT denotes
the temperature, which is thusdefinedby the mean kinetic energy of the particles.
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2.2 Field equations of extended thermodynamics with 13 and 14 moments

In moment methods one assumes that the state of the gas is satisfactorily described by a set of moments of
the phase density

uA =
∫
ψA (ck) f dc .

Extended thermodynamics of 14 variables choosesψA = m
{

1,Ci ,
1
2C2,C〈i Cj 〉, 1

2C2Ci ,C4
}

whereCi = ci −vi

is the peculiar velocity. This choice corresponds to the moments of the peculiar velocity1

% = m
∫

f dc , 0 = m
∫

Ci f dc ,
3
2
%

k
m

T =
m
2

∫
C2f dc ,

p〈ij 〉 = m
∫

C〈i Cj 〉f dc , qi =
m
2

∫
C2Ci f dc , ∆ = m

∫
C4 (f − fM ) dc ,

(3)

where we have introduced the pressure tensorpij , the heat fluxqi and the non-equilibrium part of the full
trace of the fourth moment∆. fM denotes the local Maxwellian, viz.

fM =
%

m

√
m

2πkT

3

e− m
2kT C2

(4)

and the trace of the pressure tensor defines the pressure

p =
1
3

pii = %
k
m

T .

The equations for the moments follow by multiplication of the Boltzmann equation withψA and subsequent
integration over velocity space. The resulting equations do not form a closed system of partial differential
equations for the moments since they contain quantities which are nota priori related to the moments. Here,
a closure assumption is required, and it is obvious that a phase density of the form

f (xk , t , ck) = f (uA (xk , t) , ck) (5)

serves the purpose. A solution of this type is called ”normal solution”, and there are several methods to obtain
it. Grad found his normal solution by an expansion around local equilibrium where the phase density is a
Maxwellian. In the last years the method of maximizing the entropy [4] became more and more popular [7].
This method is equivalent to extended thermodynamics and we refer the interested reader to the monograph
of Müller & Ruggeri for a detailed discussion of these topics [5]

The normal solution corresponding to (3) follows either from Grad’s method [3] or from entropy maxi-
mization [4, 5, 7] and subsequent linearization around local thermal equilibrium as

f14 = fM

(
1 +

m2

8%k2T2
∆− m3

12%k3T3
∆C2 +

m4

120%k4T4
∆C4− (6)

+
m2

2%k2T2
p〈jk〉Cj Ck − m2

%k2T2
qkCk

(
1 − 1

5
m
kT

C2

))
.

The moment equations read

∂%

∂t
+
∂%vk

∂xk
= 0, (7)

∂vi

∂t
+ vk

∂vi

∂xk
+

1
%

∂p
∂xi

+
1
%

∂p〈ik〉
∂xk

= 0, (8)

1 Angular brackets denote the traceless part of a symmetric tensor.
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3
2
%

k
m

(
∂T
∂t

+ vk
∂T
∂xk

)
+
∂qk

∂xk
+ pkl

∂vk

∂xl
= 0, (9)

∂p〈ij 〉
∂t

+
∂p〈ij 〉vk

∂xk
+

4
5

∂q〈i

∂xj 〉
+ 2pk〈i

∂vj 〉
∂xk

= −α%p〈ij 〉, (10)

∂qi

∂t
+ vk

∂qi

∂xk
+

5
2

p
k
m
∂T
∂xi

+
kT
m

∂p〈ik〉
∂xk

+
1
6
∂∆

∂xi

+
7
2

p〈ik〉
k
m
∂T
∂xk

− p〈il 〉
%

∂plk

∂xk
+

7
5

qi
∂vk

∂xk
+

7
5

qk
∂vi

∂xk
+

2
5

qk
∂vk

∂xi
= −2

3
α%qi ,

(11)

∂∆

∂t
+ vk

∂∆

∂xk
+ 8

kT
m
∂qk

∂xk
+ 8

kT
m

p〈kl〉
∂vk

∂xl
− 8

qk

%

∂p〈kl〉
∂xl

+28
k
m

qk
∂T
∂xk

+
7
3
∆
∂vk

∂xk
= −2

3
α%∆,

(12)

whereα is a constant that follows by calculation of the collision production for Maxwell molecules. The first
three equations are the equations of balance for the conserved quantities mass, momentum and energy.

The set of equations (7)-(12) reduces to Grad’s 13 moment equations, if one sets∆ = 0 and omits the
last equation.

3 Boundary conditions

For the calculation of boundary value problems with the systems given above, one needs boundary conditions
for most of the moments. This is a problem - especially in the high moment theories - because in an experiment
only few boundary values can be controlled. Furthermore, in a rarefied gas temperature jumps at the walls
and a velocity slip can occur.

3.1 Maxwell’s boundary conditions

The most simple model for the velocity and the temperature jump is due to Maxwell [14, 15]. He assumed
that the fractionθ of the incident particles is thermalized at the wall and leaves the wall with a Maxwellian
distribution.θ is called accommodation coefficient. The fraction(1 − θ) of the emerging particles is reflected
elastically at the wall.

We denote the velocity of a particle byci and the velocity of the wall byvW
i , such that the particle has

the velocityCW
i = ci − vW

i in the frame where the wall is at rest. Moreover, we choose the normal vector
ni of the wall so that it points into the gas. In this manner we havenkCW

k ≤ 0 for the incident particles and
nkCW

k ≥ 0 for the particles that leave the wall.
Furthermore,fN

(
CW

i , xi , t
)

denotes the phase density in the gas close to the wall. For our purposes it is
convenient to writefN as a function of the tangential velocityCW

i − nkCW
k ni and the normal velocitynkCW

k
as fN

(
CW

i − nkCW
k ni ,nkCW

k , xi , t
)
. In an elastic collision, the tangential velocity remains unchanged, while

the normal velocity changes its sign. Such we have the phase densitiesfN
(
CW

i − nkCW
k ni ,nkCW

k , xi , t
)
, for

the incident particles (nkCW
k ≤ 0) andfN

(
CW

i − nkCW
k ni ,−nkCW

k , xi , t
)

for the elastically reflected particles
( nkCW

k ≥ 0), respectively. In the following, for simplicity of notation, we suppress the tangential velocity as
well as space and time in the list of arguments offN and write the phase density at the wallf̄ according to
Maxwells boundary conditions as

f̄ =




θfW + (1 − θ) fN
(−nkCW

k

)
, nkCW

k ≥ 0

fN
(
nkCW

k

)
, nkCW

k ≤ 0 .
(13)



Temperature jump and velocity slip 5

Here fW is the Maxwellian of the thermalized particles,

fW = fM
(
%W ,TW , v

W
i

)
=
%W

m

√
m

2πkTW

3

e− m
2kTW

C2
W . (14)

TW denotes the temperature of the wall and%W is the density of the thermalized particles.%W has to be
determined so as to ensure that the wall does not accumulate particles, a condition which may be written in
the form

m
∫

nk CW
k ≥0

CW
k nkf̄ dc = −m

∫
nk CW

k ≤0
CW

k nkf̄ dc . (15)

We introduce the relative velocity, or slip velocity

Vk = vk − vW
k , (16)

which is parallel to the wall since there is no gas flow through the wall

Vknk = 0 . (17)

One aim of this paper is the determination ofVi .
In (15) we insert (13), substitute−nkCW

k → nkCW
k and introduce the peculiar velocity of the particles

Ci = CW
i − Vk with nkCk = nkCW

k , because of (17). The mean value ofCi vanishes by definition so that∫
CknkfN dc = 0 and the condition (15) simplifies to

m
∫

nk CW
k ≥0

CW
k nkfWdc = m

∫
ni Ci ≥0

CknkfN dc . (18)

4 Temperature jump and slip

In this section we derive equations for the temperature jumpT − TW and the velocity slipVi at the wall.
These follow from the jump conditions for the tangential force and the heat flux at the wall.

4.1 Tangential force

The tangential forceti =
(
pij − ni pjk nk

)
nj acting on the wall is determined by the phase densityf̂

t̂i = m
∫

(ci − ni cknk) cj nj f̄ dc ,

while the tangential force on the gas follows from the phase densityfN ,

ti = m
∫

(ci − ni cknk) cj nj fN dc .

Both are equal due to Newton’s third law and we evaluate this condition in the rest frame of the wall where
ci = CW

i . With (13) we obtain

m
∫

nk CW
k ≥0

(
CW

i − ni C
W
k nk

)
CW

j nj
[
θfW + (1 − θ) fN

(−ni C
W
i

)]
dc+

+m
∫

nk CW
k ≤0

(
CW

i − ni C
W
k nk

)
CW

j nj fN dc = m
∫ (

CW
i − ni C

W
k nk

)
CW

j nj fN dc .

Again, we substitute−nkCW
k → nkCW

k in the second term of the first integral and useCW
k nk = Cknk . We

introduce the peculiar velocityCi = CW
i − Vi in the integrals withfN and obtain with (18) and the definition

of the pressure tensor (3)4 an equation for the determination ofVi , viz.
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1 − θ

θ

(
pij − ni pjk nk

)
nj = m

∫
nk CW

k ≥0

(
CW

i − Vi − ni C
W
k nk

)
CW

j nj fWdc

−m
∫

nk Ck≥0
(Ci − Cknkni ) Cj nj fN dc .

(19)

Note that the tangential force vanishes in the caseθ = 0, - there are no shear stresses at an elastically reflecting
wall.

4.2 Energy flux

The normal part of the energy fluxm2
∫

c2ci fdc is continuous at the wall, a condition which we may write in
the rest frame of the wall as

m
2

∫
nk CW

k ≥0
C2

WCW
k nk

[
θfW + (1 − θ) fN (−ni Ci )

]
dc+

m
2

∫
nk CW

k ≤0
C2

WCW
k nkfN dc =

m
2

∫
C2

WCW
k nkfN dc .

By means of the same substitutions as above this equation reduces to

1 − θ

θ

(
qknk + Vi p〈ik〉nk

)
=

m
2

∫
nk CW

k ≥0
C2

WCW
k nkfWdc − V 2θ

m
2

∫
nk CW

k ≥0
CW

k nkfWdc

−m
2

∫
nk Ck≥0

(
C2 + 2Ci Vi

)
CknkfN dc ,

where we have used (18) and the definitions of the pressure tensor and the heat flux (3)4,5. We eliminateV 2

by means of the scalar product of (19) withVi and obtain

1 − θ

θ

(
2qk + p〈kr〉Vr

)
nk = m

∫
nk CW

k ≥0
C2

WCW
k nkfWdc − Vi m

∫
nk CW

k ≥0
CW

i CW
k nkfWdc

−m
∫

ni Ci ≥0
C2CknkfN dc − Vi m

∫
ni Ci ≥0

Ci CknkfN dc .
(20)

This equation will be used for the determination of the temperature jump. Note that an elastically reflecting
wall - θ = 0 - is adiabatic, i.e.qknk = 0.

4.3 Equations for temperature jump and slip

It is an easy task to calculate the integrals over the Maxwellian distribution in (18, 19, 20), see Appendix A.
For further simplification we decompose the pressure tensor into its irreducible partspδij andp〈ij 〉 and define
half-space moments offN by

H r
i1···in = m

∫
ni Ci ≥0

C2r Ci1 · · · Cin fN dc . (21)

Thus, we may write the condition for conservation of mass (18) as

1
2

√
2
π
%W

√
kTW

m
= H 0

k nk . (22)

This equation serves for the elimination of the density%W in the conditions for the shear stress and the heat
flux (19, 20) which now read

1 − θ

θ

(
p〈ik〉 − ni p〈jk〉nj

)
nk = −Vi H

0
k nk − (δij − ni nj

)
nkH 0

jk ,

(23)
1 − θ

θ

(
2qk + p〈kr〉Vr

)
nk = 4

kTW

m
H 0

k nk − H 1
k nk − Vi H

0
ik nk .

We shall proceed with the evaluation of the equations (23).
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5 Grad’s 13 moment phase density

The aim of this section is the determination of temperature jump and slip velocity in case that Grad’s 13
moment density is appropriate for the description of the gas. This is the case in slowly varying processes
with flat gradients.

5.1 Phase density and boundary conditions

Grad considered 13 moments to be relevant, the density%, the velocityvi , the temperatureT, the pressure
deviatorp〈ij 〉 and the heat fluxqi . By means of an expansion in Hermite polynomials he obtained the phase
density [3][5]

f13 = fM

(
1 +

m2

2%k2T2
p〈jk〉Cj Ck − m2

%k2T2
qkCk

(
1 − 1

5
m
kT

C2

))
, (24)

wherefM is the local Maxwellian (4). The same functionf13 follows from (6) by setting∆ = 0.
With (24) the conditions (23) for shear stress and heat flux read

2 − θ

θ

(
p〈ik〉 − ni p〈jk〉nj

)
nk = −

√
2
π

√
m
kT

[
Vi

(
%

kT
m

+
1
2

p〈ik〉ni nk

)
+

1
5

(
qi − ni qj nj

)]
,

(25)

2 − θ

θ

(
qk +

1
2

p〈kr〉Vr

)
nk =

√
2
π

√
m
kT

[
2%

k2

m2
T (TW − T) +

k
m

(
TW − 3

2
T

)
p〈ik〉ni nk − 1

10
Vj qj

]
.

The calculation of the half-space moments off13 is outlined in Appendix B.

5.2 Temperature jumps

We consider one-dimensional stationary heat transfer in a gas at rest between two walls of distanceL, such
that vi = vW

i = 0 andp〈ij 〉 = 0. In this case (25)1 is identically fulfilled and (25)2 reduces to

TW − T =
2 − θ

θ

√
π

2
1

2% k
m

√
m
kT

qknk , (26)

an equation that relates the temperature jump at the wall to the heat flux. Due to the energy balance (9) the
heat flux is constant in this case,

q = qknk = const

and the field equation for the heat flux (11) reduces to Fourier’s law for Maxwell molecules, viz.

15
4

k2

m2
T

dT
dx

= −αq . (27)

We denote the temperatures of the gas - not the temperature of the wall! - at the left and the right wall by
T (x = 0) = T0 and T (x = L) = TL, respectively. With these boundary conditions we obtain from (27) the
temperature function between the two walls as

T =

√
T2

0 +
(
T2

L − T2
0

) x
L

; (28)

accordingly the heat flux is given by

q = −15
8

k2

m2

T2
L − T2

0

αL
. (29)
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This would be the solution of the stationary heat flux problem, if the temperaturesT0 andTL were prescribed.
But T0 andTL are the temperatures of thegasat the walls and we are not able to prescribe these temperatures.
Rather we may control the temperature of thewalls, TW0 andTWL . Therefore we need a relation betweenT0

and TW0 or betweenTL and TWL . These follow from equation (26) which relates the temperature difference
between wall and gas to the heat flux as (note, that the normal vectors on the two walls point in opposite
directions)

TW0 − T0 =
2 − θ

2θ

√
π

2
1

%0
k
m

√
m

kT0
qknk , TWL − TL = −2 − θ

2θ

√
π

2
1

%L
k
m

√
m

kTL
qknk . (30)

The pressurep is constant in the process under consideration, see Eqn. (8). In (30) we introduce the heat flux
(29) and dimensionless temperatures byT̂ = T/TW0 to obtain

1 − T̂0

T̂0
= −2 − θ

θ

√
π

2
15
16

Kn
T̂2

L − T̂2
0√

T̂0

,
T̂WL − T̂L

T̂L
=

2 − θ

θ

√
π

2
15
16

Kn
T̂2

L − T̂2
0√

T̂L

. (31)

The constantKn =
√

k
m TW0

3

pαL is a Knudsen number. For given̂TW0 = 1 and T̂WL , (31) has to be solved for

T̂0, T̂L numerically in order to obtain the temperature (28) and the heat flux (29) which we may write in
dimensionless form as

T̂ =
√

T̂2
0 +
(
T̂2

L − T̂2
0

)
x̂ , q̂ =

q

p
√

k
mTW0

= −15
8

Kn
(
T̂2

L − T̂2
0

)
. (32)

The temperature jumps (31) depend on the values of the accommodation coefficientθ and the Knudsen
numberKn: there are large jumps for
i.) small values of the accommodation coefficientθ, i.e. reflecting walls
ii.) large Knudsen numbersKn, i.e. mean free paths which are comparable to the distanceL of the walls.

This can be seen in Fig. 1, where the temperature is drawn for different values of the accommodation
coefficient in a dense gas (Kn = 0.001) and a rarefied gas (Kn = 0.1). The wall temperatures arêTW0 = 1,
and T̂WL = 2.

Fig. 1. TemperaturêT versus space coordinate ˆx.

Chapman & Cowling [14] find for the temperature jump

TW − T =
2 − θ

θ
u′l

∂T
∂x

,

where l = 1
%α

√
16kT
πm denotes the mean free path andu′ is a number of order unity. We may identifyu′ by

combining (26) and (27),

u′ =
15π

32
√

2
= 1.0413.
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5.3 Slip

In this section we derive a formula for the velocity slip. We consider an isothermal shear flow withT = TW ,
p〈jk〉nj nk = 0 under the assumption that the heat flux is perpendicular to the flow,qi = qj nj ni . Now, the jump
conditions (25) reduce to

Vi = −2 − θ

θ

√
π

2

√
kT
m

p〈ik〉nk

p
(33)

qknk = −1
2

p〈kr〉Vr nk =
1
2

θ

2 − θ

√
2
π
%

√
kT
m

V 2 .

It follows that the slip velocityVi is proportional to the shear stress at the wall. Eqn. (33)1 corresponds to
(26) for the temperature jump. If we insert the Navier-Stokes lawp〈ij 〉 = − 2p

%α

∂v〈i

∂xk〉
, we find

Vi =
2 − θ

θ
ul
∂v〈i

∂xk〉
nk

with u = π
2
√

2
= 1.10 7 and one finds the same equation in the book by Chapman & Cowling [14].

From (33)2 we conclude that the process is isothermal only, if the power of the shear stress is removed
by a heat flux. In this paper we do not consider a shear flow problem in detail; the equations for the slip
velocity are derived for later use.

6 Stationary heat transfer in extended thermodynamics with 14 fields

In this section we consider extended thermodynamics with 14 fields where the state space is enlarged by the
non-equilibrium part∆ of the full trace of the fourth moment. Now, the phase density is given by (6).

In the remainder of the paper, we restrict the argument to the case of stationary heat transfer in a gas at
rest. Thus we have vanishing velocity and no slip. Similar problems with non-vanishing velocity, e.g. Couette
flow, are more cumbersome, see [17], and may be considered in future work.

6.1 Temperature jump

In one-dimensional stationary heat transfer in a gas at rest we have from (7)-(12)p〈jk〉 = 0,Vi = 0 and the
jump condition (23)1 is identically fulfilled while the jump condition for the temperature (23)2 reduces to

1 − θ

θ
2qknk = 4

kTW

m
H 0

k nk − H 1
k nk . (34)

H 0
k , H 1

k are half space moments off14 which are calculated in Appendix B as

H 0
i =

%

2

√
2
π

√
kT
m

(
1 − 1

120
∆

p kT
m

)
ni ,

H 1
i = 2%

√
2
π

√
kT
m

3(
1 +

1
40

∆

p kT
m

)
ni + qi ,

so that (34) reduces to

TW − T
T

=

2 − θ

2θ
1
p

√
π

2

√
m
kT

qknk +
1

30
∆

p kT
m

1 − 1
120

∆

p kT
m

. (35)

The temperature jumpTW − T depends on all moments (temperatureT, pressurep, heat fluxqk and fourth
moment∆) in front of the wall in the 14 moment case.
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6.2 Field equations

We consider the field equations (7)-(12) for one-dimensional stationary heat transfer. Here, all time derivatives
and the velocity vanish. Thus, the mass balance (7) is identically fulfilled and the energy balance (9) reduces to
∂q
∂x = 0. Equation (10) now reads815

∂q
∂x = −α%p〈11〉 and accordinglyp〈ij 〉 vanishes. The balance of momentum

(8) gives the constancy of the pressure,p = const, and this allows us to introduce the same dimensionless
quantities as above, viz.

x̂ =
x
L
, T̂ =

T
TW0

, ∆̂ =
∆

p k
mTW0

,

%̂ =
% k

mTW0

p
=

1

T̂
, q̂ =

q

p
√

k
mTW0

, Kn =

√
k
mTW0

3

αLp
.

There remains the following simple system of ordinary non-linear differential equations

5
2

dT̂
dx̂

+
1
6

d∆̂
dx̂

= − 2
3Kn

q̂

T̂
,

dT̂
dx̂

= − 1
42Kn

∆̂

q̂T̂
and q̂ = const. (36)

For a given Knudsen numberKn (i.e. given pressure), the solution of (36) requires three boundary conditions.
In an experiment, however, we can control only two quantities, viz. the temperaturesTW0 and TWL of the
walls [1].

The jump conditions (35) relate the wall temperatures and the values of the moments in front of the walls,
denoted byT0, ∆0 andTL, ∆L, respectively. In dimensionless form we find the relations

T̂W0 − T̂0 =

2 − θ

2θ

√
π

2

√
T̂0q̂ +

1
30
∆̂0

1 − 1
120

∆̂0

T̂0

, T̂WL − T̂L =
−2 − θ

2θ

√
π

2

√
T̂Lq̂ +

1
30
∆̂L

1 − 1
120

∆̂L

T̂L

. (37)

With these boundary conditions, the system (36) could be solved numerically, if the heat flux ˆq were known.
q̂ enters these equations as a parameter. Indeed, we need one additional boundary value for the heat flux.
In an experiment, however, it is impossible to prescribe the heat fluxand the two temperatures of the walls
independently.

Thus, additional assumptions are needed for the determination of the heat flux. For heat transfer without
temperature jumps Struchtrup & Weiss [1] have determined the heat flux from the postulate that themaximum
of the local entropy production becomes minimal in stationary processes. We shall use the same method and a
similar one, which assumes that theglobal entropy production becomes minimal in stationary processes[18]
[19]. The results of both methods will be compared to calculations with so-called kinetic schemes [2].

For given valueŝTW0, T̂WL and q̂ the equations (36) and (37) were solved numerically. Note, that not all
choices of the heat flux lead to realistic results. We must require

T̂W0 ≤ T̂0 ≤ T̂ (x) ≤ T̂L ≤ T̂WL .

Indeed, for given valueŝTW0, T̂WL , Kn andθ, these inequalities hold only within a small interval(q̂min, q̂max)
of values forq̂. For T̂W0 = 1, T̂WL = 2, andθ = 1, the table below gives the appropriate values of ˆqmin, q̂max.

Kn q̂max q̂min

0.1 -0.26436 -0.30705
0.01 -0.050519 -0.051682

We have defined temperature as a measure for the kinetic energy of the gas, see (2), but the notion of
temperature in non-equilibrium is not clear, see [20] for discussion and the introduction of an appropriate
thermodynamic temperature.
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In order to find the relation to extended thermodynamics with 13 moments, we eliminate∆̂ from (36),

q̂ = −15
4

KnT̂
dT̂
dx̂

+
21
2

Kn2q̂T̂
d

dx̂

[
T̂

dT̂
dx̂

]
. (38)

For small Knudsen numbers, the second term on the r.h.s. may be ignored. Thus (38) reduces to Fourier’s
law (27). In the case of small Knudsen numbers, the 13 field theory is sufficient for a proper description of
stationary heat transfer.

6.3 Kinetic schemes solutions

Stationary heat transfer with 14 moments was also considered in [2] by means of the so-called kinetic schemes
[16]. The results of [2] are not fully satisfactory since the heat flux is not a constant but jumps at the walls -
so that the energy conservation law is violated. It is therefore imperative to compare the results of [2] with
the numerical solution of (36), (37), which has a constant heat flux at the walls by construction.
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1.6

1.8
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Kn = 0.1 q = - 0.303569
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kinetic schemes + ET14 (mod)

0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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Kn = 0.1 q = - 0.303569

kinetic schemes + ET14 (mod)
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0 0.2 0.4 0.6 0.8 1
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2
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Kn = 0.01 q = - 0.0515221

Kn = 0.01 q = - 0.0515221
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^
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^
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^

^

^
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Fig. 2. Comparison of kinetic scheme results with solution of (36), (37) withT̂W0 = 1, T̂WL = 2 (ET14) and with modified wall
temperatures (ET14 (mod)). The curve ET13 shows the corresponding solution of (32). Left column:Kn = 0.1. Right column:Kn = 0.01,
all curves lie on top of each other.

As examples we consider the case of full accommodation,θ = 1, with wall temperatureŝTW0 = 1, T̂WL = 2
and Knudsen numbersKn = 0.1, Kn = 0.01.

The kinetic scheme calculations with 1.000 (Kn = 0.1) and 10.000 (Kn = 0.01) grid points provide a
heat flux in the interior ˆq (Kn = 0.1) = −0.303569 and ˆq (Kn = 0.01) = −0.0515221, respectively. In order to
compare the kinetic scheme results with the solution of the equations (36), (37), we have solved the equations
for the same values of ˆq. Note, that in this case no additional boundary conditions are needed, since the value
for q̂ follows from the kinetic scheme solution. If we cannot rely on these, however, the value of ˆq must be
determined by an additional entropy principle, see below. The results of the kinetic scheme and the equations
(36), (37) for the same values of ˆq are shown in Fig. 2.
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For Kn = 0.1 (left column) there are marked differences inT and∆ in the intervalx ∈ {0,0.3}. These
are due to the above mentioned problems of the kinetic scheme with conservation of energy at the walls. In
order to find a measure for the error, we have computed - by (37) - new wall temperatures from the kinetic
scheme data and found̂TW0 = 0.97453, T̂WL = 2.00428. With these modified boundary data, the solution of
(36) gives exactly the kinetic scheme solution. Thus, at this Knudsen number, the kinetic scheme introduces
an error of approximately 3% in the boundary conditions.

For the smaller Knudsen numberKn = 0.01 the difference of the kinetic scheme and the present solution
is very small. Here, the modified temperatures areTW0 = 0.99600 andTWL = 1.99842 and the corresponding
curves agree very well (right column of Fig. 2). Indeed, in the figures all curves lie on top of each other. The
most remarkable difference is found in the values of∆ at x = 0 with ∆̂0num = 0.104705 for the numerical
solution and∆̂0kS = 0.16231 from the kinetic scheme. Moreover, only the latter has the steep descent of∆̂
at x = 1. However, these differences have no influence on the results for the temperature which - due to the
small Knudsen numberKn = 0.01 - agrees very well with the 13 field solution (32).

We conclude that the kinetic schemes are not correct in the interesting case of large Knudsen numbers,
but introduce an error at the boundaries, see [2] for a detailed discussion. Thus, the kinetic schemes results
cannot serve as a proper benchmark for the present problem. However, they may approximately give the
proper results, and we shall therefore still compare our results with those of the kinetic scheme in the next
sections.

6.4 Entropy productions

Let us remember that the previous solution of (36), (37) was based on the value ofq from the kinetic scheme
calculations. Now we consider the two afore-mentioned principles for the entropy production which will
allow us to findq.

In order to apply the entropy production principles, we need the local entropy production density (per
unit volume) which is given by [5]

Σ = −k
∫

ln
f
y

S (f ) dc, (39)

where 1/y is the volume of a cell of phase space. In the case of stationary heat transfer with 14 moments we
obtain in dimensionless form

Σ̂ =
4

15Kn

q̂2

T̂3
+

1
180Kn

∆̂2

T̂4
. (40)

Note, thatΣ̂ is an approximation of the entropy production, where only quadratic contributions in the non-
equilibrium quantitiesq and∆ are taken into account.

While there is no production of energy and momentum at the walls - heat flux and tangential stress are
constant - there is a production of entropy at the walls [15]. For the following we assume that this contribution
(a production density per unit area) does not influence the behavior of the gas between the walls. Thus, we
shall consider only the entropy production (40).

6.5 Global principle for the entropy production

The application of the global principle for the entropy production works as follows:

1. Choose the parameters which are given or controllable, i.e. the wall temperaturesT̂W0, T̂WL , the Knudsen
numberKn and the accommodation coefficientθ.

2. Choose a value for the heat flux ˆq.
3. Solve the boundary value problem (36) with (37). This yields the fieldsT̂ (x̂; q̂) , ∆̂ (x̂; q̂).
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4. Calculate the entropy production densityΣ̂ (x̂; q̂) and compute the global entropy production (per unit
area)

Σ̂tot (q̂) =
∫ 1

0
Σ̂ (x̂; q̂) dx̂ .

5. Return to 3.) and change ˆq. Proceed until min
[
Σ̂tot (q̂)

]
is found.

According to the global principle, the heat flux corresponding to min
[
Σ̂tot (q̂)

]
is assumed to be measured

in an experiment. Results will be presented below.

6.6 Minimax principle for the entropy production

The application of the minimax principle for the entropy production works as follows:

1. Choose the parameters which are given or controllable, i.e. the wall temperaturesT̂W0, T̂WL , the Knudsen
numberKn and the accommodation coefficientθ.

2. Choose a value for the heat flux ˆq.
3. Solve the boundary value problem (36) with (37). This yields the fieldsT̂ (x̂; q̂) , ∆̂ (x̂; q̂).
4. Calculate the entropy production densityΣ̂ (x̂; q̂) and compute its maximum

Σ̂max(q̂) = max
[
Σ̂ (x̂; q̂)

]
.

5. Return to 3.) and change ˆq. Proceed until min
[
Σ̂max(q̂)

]
is found.

According to the minimax principle, the heat flux corresponding to min
[
Σ̂max(q̂)

]
is assumed to be the

one that is found in an experiment.

6.7 Results

Again, we consider the case of full accommodation,θ = 1 with wall temperatureŝTW0 = 1, T̂WL = 2 and
Knudsen numbersKn = 0.1, Kn = 0.01 .

Figure 3 shows the results forKn = 0.1. In the left column we compare the results from the minimax
principle (q̂minimax = −0.310263) with the results from the kinetic scheme calculations of Sect. 6.3, while the
right column shows the results from the global principle ( ˆqglobal = −0.29207) in comparison with the kinetic
scheme. The pictures in the first row show the temperature, including the dashed temperature curve of the 13
field case (32). The latter - due to the large Knudsen number - differs from the other three temperature curves
which stem from the 14-moment case. Again, we find differences between the results which are small in case
of the temperature but clearly visible in case of∆, where the kinetic scheme and the global principle predict
a decreasing curve, while the minimax principle predicts an increasing curve. Thus, the qualitative agreement
between the result of the global principle and the kinetic scheme is better then the agreement between the
results from the minimax principle in comparison to the kinetic scheme.

We have also used the corrected wall temperatures of Sect. 6.3 and found a good agreement between the
kinetic scheme solution(q̂kS = −0.303569) and the result of the global principle

(
q̂global = −0.29207

)
with

decreasing∆, while with the minimax principle(q̂minimax = −0.310236) ∆ is increasing.
The dimensionless fields ˆq and ∆̂ are of order unity for this large Knudsen number so that the approx-

imation (40) for the entropy production is not proper. The results from both principles can only give an
indication and therefore we do not discuss the finer details as the existence of two local maxima for the
entropy production.

Moreover, we like to emphasize that the kinetic scheme results - due to the violation of conservation laws
at the walls - should not be overestimated. In particular they cannot be employed to decide which of the two
entropy principles should be preferred.
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Figure 4 shows temperaturêT and entropy production̂Σ for the caseKn = 0.01 where the quadratic
entropy production (40) is appropriate. Here, the temperature curves of the minimax principle, kinetic scheme
and 13-moment match very well. The corresponding heat fluxes - ˆqminimax = −0.0516442, qkS = −0.0515236,
q̂13 = −0.0516414 - differ by less then 0.3%. The result from the global principle, however, differs by about
5%: q̂global = −0.0490105. Differences can be found in the values of∆ atx = 0 with ∆̂0minimax = −0.00555326,
∆̂0global = 2.20706,∆̂0kS = 0.17626
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Fig. 3. TemperatureT, fourth moment∆ and entropy productionΣ for Kn = 0.1. Left column: solution according to the minimax
principle in comparison to solution of kinetic scheme. Right column: solution according to the global minimum principle in comparison
to solution of kinetic scheme. Also the temperature curve for the analytic solution with 13 moments (32) is shown.

The global principle favours a solution with an additional temperature jump at the left which is accom-
panied by a sharp increase in the entropy production. The large entropy production at the very left allows for
a smaller entropy production at the other space points, where the gas is closer to equilibrium. The minimax
principle does not permit this behavior but leads to a solution where the entropy productions at neighboring
space points are more balanced. These findings are the same as in [1] for the case without jumps.
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Fig. 4. TemperatureT and entropy productionΣ for Kn = 0.01. Solutions according to the minimax principle, the global minimum
principle, kinetic schemes, and analytic solution for 13 moments (32).

For smaller Knudsen numbers the global principle leads to increasingly bad results with a sharp increase
of the temperature at the left while the minimax principle agrees very well with the 13 field result, which is
appropriate for small Knudsen numbers, see (38).

In summary we must state that the minimax principle gives reasonable results forall Knudsen numbers
while the global principle fails for smallKn.

7 Conclusions

In this paper we have set up equations which relate temperature jump and slip at a wall to the values of the
moments inside the gas. These were used for the solution of the stationary heat transfer problem for the 13
and the 14 moment case. While for the 13 moment case no additional boundary conditions are necessary,
the 14 moment case requires an additional boundary condition for the heat flux which was determined from
the minimax principle for the local entropy production and the minimum principle for the global entropy
production.

Our results indicate that the global principle should not be used: its results are wrong at low Knudsen
numbers; most probably the reasonable results for large Knudsen numbers are coincidental.

The minimax principle gives good results forall Knudsen numbers. In particular for smallKn it agrees
with the analytical solution for the 13 field case. For large Knudsen numbers, it does not give the same
predictions as the kinetic scheme of [2]. This may be due to the inaccuracies of the latter but there are also
reasons to have some doubt about the minimax results. Indeed, for largeKn, the non-equilibrium quantities
q̂ and∆̂ are not small but of order unity in dimensionless form. Thus, the entropy production (40), which is
quadratic inq and∆, does not give the proper entropy production - clearly this causes an error. Here, one
should rely on a numerical computation of the entropy production integral (39).

We state again that 14 moments will not be sufficient for largeKn so that the corresponding results have
a restricted physical meaning. It is not clear, which and how many moments one will need for the proper
description of the gas in case of large Knudsen numbers. According to our experience with the moment
method and extended thermodynamics the moment number should be much bigger than 14. In particular, one
has to expect the formation of boundary layers at the walls, which are only weakly pronounced in the case
of 14 moments, where they stem from the non-linearities in the moment equations. Thus, we may expect
proper results only in case of a larger moment number. Once these are obtained we may compare with results
from Monte Carlo methods or molecular dynamics. Calculations of the heat transfer experiment with higher
moment numbers are in preparation. We are confident that these will give better insight into the nature and
usefulness of the minimax principle for the entropy production as well as in the properties of the kinetic
schemes.

Acknowledgements.H.S. gratefully acknowledges support by the European Community through the TMR network ”Asymptotic methods
in kinetic theory” (ERB FMBX CT97 0157).
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A Half-space moments of the Maxwellian

This appendix is devoted to the calculation of the half-space-moments of the Maxwellian, which are defined
by

hr
i1···in = m

∫
ni Ci ≥0

C2r Ci1 · · · Cin fM dC, (41)

wherefM is the Maxwellian phase density

fM =
%

m

√
m

2πkT

3

e− m
2kT C2

. (42)

With the dimensionless velocityx =
√

m
2kT C and the direction vector

νi = Ci /C = {cosϕ sinϑ, sinϕ sinϑ, cosϑ}i ,

whereni νi = cosϑ, we find

hr
i1···in =

%
√
π

3

(
2kT
m

)r + n
2
∫ ∞

x=0
e−x2

x2r +2+ndx
∫ 2π

ϕ=0

∫ π/2

ϑ=0
νi1 · · · νin sinϑdϑdϕ

hr
i1···in = %

(
2kT
m

)r + n
2 Γ

(
r + 3+n

2

)
√
π

Ii1···in . (43)

Here, we have introduced the abbreviation

Ii1···in =
1

2π

∫ 2π

ϕ=0

∫ π/2

ϑ=0
νi1 · · · νin sinϑdϑdϕ . (44)

We proceed with the calculation of the integrals for various values ofn.
For n = 0 we obtain easily

I =
1

2π

∫ 2π

ϕ=0

∫ π/2

ϑ=0
sinϑdϑdϕ = 1 ,

so that we have for the scalar half-space moments

hr = %

(
2kT
m

)r Γ
(
r + 3

2

)
√
π

. (45)

The direction of the normalni is the only distinguished vector in the calculation of the half-space moments.
Thus we must have for the vector integral

Ii =
1

2π

∫ 2π

ϕ=0

∫ π/2

ϑ=0
νi sinϑdϑdϕ = γni .

Scalar multiplication withni gives

γ =
1

2π

∫ 2π

ϕ=0

∫ π/2

ϑ=0
cosϑ sinϑdϑdϕ =

1
2

and we find the vectorial moments as

hr
i = %

(
2kT
m

)r + 1
2 Γ (r + 2)

2
√
π

ni . (46)

The tensorial integral has the form
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Iij =
1

2π

∫ 2π

ϕ=0

∫ π/2

ϑ=0
νi νj sinϑdϑdϕ = γni nj + βδij ,

where the coefficients follow by scalar multiplication withni nj andδij asγ = 0 andβ = 1/3 so that

hr
ij = %

(
2kT
m

)r +1 Γ
(
r + 5

2

)
3
√
π

δij . (47)

For the integral with three indices we find the representation

Iijk =
1

2π

∫ 2π

ϕ=0

∫ π/2

ϑ=0
νi νj νk sinϑdϑdϕ = γni nj nk + β

(
ni δjk + nj δik + nkδij

)
,

where the coefficients follow by multiplication withni nj nk andni δjk , respectively. We obtain

γ + 3β =
1
4

and γ + 5β =
1
2

so that β = −γ =
1
8

and

hr
ijk = %

(
2kT
m

)r + 3
2 Γ (r + 3)

8
√
π

(
ni δjk + nj δik + nkδij − ni nj nk

)
. (48)

The fourth order integral has the representation

Iijkl = α
(
δij δkl + δikδjl + δil δjk

)
+ γni nj nknl +

+β
(
ni nj δkl + ni nkδjl + ni nl δjk + nj nkδil + nj nl δik + nknl δij

)
.

Multiplication with ni nj nknl , ni nj δkl andδij δkl yieldsβ = γ = 0 andα = 1/15 so that

hr
ijkl = %

(
2kT
m

)r +2 Γ
(
r + 7

2

)
15

√
π

(
δij δkl + δikδjl + δil δjk

)
. (49)

B Half-space moments for 13 and 14 moments

In extended thermodynamics of 14 fields one finds the phase density

f14 = fM

(
1 +

m2

8%k2T2
∆− m3

12%k3T3
∆C2 +

m4

120%k4T4
∆C4−

+
m2

2%k2T2
p〈jk〉Cj Ck − m2

%k2T2
qkCk

(
1 − 1

5
m
kT

C2

))

which reduces to Grad’s phase density for∆ = 0. The half-space moments of this function are defined by

H r
i1···in = m

∫
ni Ci ≥0

C2r Ci1 · · · Cin f14dC (50)

and may easily be expressed in terms of the half-space moments of the Maxwellian which we have calculated
in Appendix A. We obtain

H r
i1···in = hr

i1···in +
m2

8%k2T2
∆hr

i1···in − m3

12%k3T3
∆hr +1

i1···in +
m4

120%k4T4
∆hr +2

i1···in −

+
m2

2%k2T2
p〈jk〉hr

i1···in jk − m2

%k2T2
qkhr

i1···ink +
1
5

m3

%k3T3
qkhr +1

i1···ink . (51)

The half-space moments of Grad’s phase density follow for∆ = 0.
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