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Abstract

The BGK model for an ideal gas with an internal degree of freedom intro-
duces two characteristic times into the Boltzmann equation, accounting for the
times between elastic and inelastic collisions, respectively. Moment equations
are derived from the Boltzmann equation and the influence of the characteristic
times is studied for some processes, such as heating, sound waves and shocks.

1 Introduction

There are two different interaction mechanisms in an ideal gas with an internal
degree of freedom:

1.) Elastic collisions (&), which do not change the internal degree of freedom of the
particles.

2.) Inelastic collisions (Z) which do change the internal degree of freedom and supply
or remove energy from the particles.

The present paper examines the influence of these interactions on the behavior of a
gas by means of the Boltzmann equation with a BGK collision term.

In the BGK model each interaction mechanism o = £,7 is characterized by a re-
laxation time 7, and an equilibrium phase density f,. The relaxation time 7, may
be interpreted as the mean time of free flight between collisions of the type a. The
equilibrium phase density follows from the maximization of entropy under the con-
straints of given values for those macroscopic quantities which remain unchanged in
collisions of type a.

Integration of the BGK equation leads to moment equations for mass density, mo-
mentum density, energy density, pressure tensor and heat flux. These are solved for
some simple processes, such as heating, sound waves and shocks. It is shown that
the specific heat and the sound speed depend on the ratio of the relaxation times
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T1/Te; the same is true for the shock structure. A Maxwellian iteration shows that
viscosity and heat conductivity depend on an average characteristic time 7 only,

which is given by % - % + %

Although the gas under consideration is not realistic we think that the paper is
instructive for two reasons:

1.) It shows how the entropy maximum principle may be used in order to construct
BGK collision terms for arbitrary particle interactions.

2.) It provides a simple system where the influence of two distinct characteristic
times may be studied by analytical solutions of simple processes.

2 Ideal Gas with an Internal Degree of Freedom

2.1 Phase density

We consider a model gas whose particles are assumed to have an internal degree of
freedom which is characterized by a number n, such that E,, n =0,1,2,... is the
internal energy of the particle.

For detailed calculations we shall assume that the particles are quantum oscillators
with
E,, = hnQ) (1)

where A is Planck’s constant and 2 is a frequency. FE, may be called ”vibration
energy”. Thus the reader may think of a diatomic gas with vibrating molecules. We
do not consider the rotation of the molecules.

The phase density f,, of the gas is defined such that f,, (z;,t, ¢;) dc gives the number
density of particles in the energetic state n with velocities in the range (¢;, ¢; + dc;)
at the point z; and time t. Once the phase density f, is known, we may calculate
macroscopic quantities by integration over the particle velocities and by summation
over the energetic states. Macroscopic quantities with obvious meaning are given
below:

On=m / fndc mass density of particles in state n

(2)

0= Z On mass density
n
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ov; = Z m / ¢ fndc momentum density
n
0 = Z % / C%f.dc density of thermal energy
n
ou = Z / B, fodc = Z onEn density of vibration energy
n n
Pij = Zm / C;Cj fndc pressure tensor
n
%zifg/ﬁah@ heat flux
n

Here, m denotes the mass of a particle and C; = ¢; — v; is the peculiar velocity,
i.e. the particle velocity measured in a frame which moves with the center of mass
velocity v;.

We shall also need the entropy of the gas which is given by

08 = —kZ/fn ln%dc (3)

where k is Boltzmann’s constant and y is the volume of a cell of phase space.

By (2)4,6 we find that the trace of the pressure tensor equals twice the energy density.

The pressure is given by
1 2
gbii = 308, (4)

so that the pressure tensor may be written as

p:

Pij = Poij + Dijy 5 (5)
where the brackets denote the symmetric and trace-free part. As usual, temperature
is defined by the ideal gas law
_3k,

2m

(6)

We assume that particles in all states have the same velocity and temperature, i.e.

k
p=o—T so that €
m

m/cifndc =0nV; and % /C’andc =0n€ . (7)

2.2 Boltzmann Equation and Balance Laws

The phase density f,, obeys the Boltzmann equation

Ofn , O
Gt +CI 61’2

:gn +In ’ (8)
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where &, and Z,, are collision terms. We have to consider two collision terms because
there are two interactions between the particles: &, refers to elastic collisions where
the energetic states of the particles remain unchanged and Z,, refers to inelastic
collisions where the energetic states are changed. Expressions for &, and Z,, will be
derived in the next subsection.

Multiplication of the Boltzmann equation with m, ¢;, %02 and F, and subsequent
integration and summation yields balance equations for the quantities (2), viz.

On , Ot _ . / Tode

ot Oz;
Ggfz . 3@%'2;; Pij _ 9)
% + 89%;% +pijg—;f; = % ;/szndc

dou  Oouv;
Bt T om; —m;En/Indc.

Here we have assumed that the elastic collisions do not change the number of par-
ticles of state m, nor do they change momentum and thermal energy, so that we
have

m/é'ndc:O, mZ/ciEndc:O, %Z/CQEndc:O. (10)

Inelastic collisions do not contribute to changes in total number, momentum and
energy, so that we have

mZ/Indc:O , mZ/ciIndc:(),
m
5; / CQIndc—i—m;En / Zpdc =0.

Note that the flux of internal energy in (9); is given by ouv; - thus the transport of
internal energy is purely convective.

(11)

2.3 BGK Model
2.3.1 Elastic Collisions

We assume that the collision term for elastic collisions has the BGK form [1]

En = (fo— fe) (12)

TE
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where 7¢ is a relaxation time and fg, is an equilibrium distribution. In fact fg, is
the equilibrium distribution which maximizes the entropy (3) under the constraint
of prescribed values for those macroscopic quantities that are conserved in elastic
collisions, i.e. on, ov; and pe. The first step of the maximization process provides

fe, :yexp{l —% <)\Qn )\UiC@-)\€%CZ>} (13)

where \,,, Ay; and A\, are Lagrange multipliers which must be determined from the
conservation requirements (10). We obtain the Maxwell-Boltzmann phase density

3 3
_ o /3 Bl f m LM e
Jeu =\ o eXp{ 450}_m 27 kT exp { 2kTC}' (14)

The relaxation time 7¢ should be interpreted as the mean time of free flight of a
particle between elastic collisions. 7g accounts for elastic collisions of a particle of
energetic state n with all other particles. Thus 7¢ will depend on the total mass
density by the well-known formula 1/7¢ = 20¢g - where o¢ is the cross section for

elastic collisions and g = w/l—fﬁT is the mean relative speed. Therefore 7¢ has the
same value for all n.

2.3.2 Inelastic Collisions

We assume that the collision term for elastic collisions has the BGK form

1

In=——"(fn— f1.) (15)

TI
where 77 is a relaxation time and fz, is an equilibrium distribution. In fact fz, is
the equilibrium distribution which maximizes the entropy (3) under the constraint
of prescribed values for those macroscopic quantities which are conserved in inelastic
collisions, i.e. o, ov; and pe + ou. Now the first step of the maximization process
provides

Iz, zyexp{—l—% (AQ—AWC&—A(%C%FE"))} : (16)

where A,, \; and A are Lagrange multipliers which must be determined from the
conservation requirements (11). We obtain

3 3
07, 3 3 07, m m
— &in e L QU ) — c* 17
2= "0\ ey, P { deg } m \ 2rkry { oK Ty (17
where e7 = %%T 7 - the thermal energy corresponding to fz, - is the solution of
En 3En
n meg exp {_ 2m€1—}
3By,
Zn exp {7 2mer }
By By,
> on Tf €XP {*R—TI}

FE,
Swexp { ~ i }

o+ ou=ope7 | 1+

_l’_

N w

k
=o0—17
m
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and the density gz, is defined by

3E, E
ep{-m}  ew{-fE}

01, =0 =0 : (19)
Seep{-2t 5, e {-F}
Insertion of (1) in (18) yields
I19)
0c + ou = peT + e (20)

m 3002
exp { Smes } -1

and this can only be solved analytically for e7 if 22 <« 1. We obtain in that

meg
approximation
3 hQ
ez =% (e +u) (maz < 1) . (21)
The last equation may be rearranged for the equilibrium temperature 77,
3 u i)
17 = gT—i— Tk (m < 1) . (22)
2m

The relaxation time 77 may be interpreted as the mean time free flight of a particle
between inelastic collisions. By the same argument as in the elastic case we have
1/7r = £0z7g and 77 has the same value for all n.

The proof of the H-Theorem for the Boltzmann equation (8) with BGK interaction
terms (12, 15) is given in Section 2.4.

2.3.3 Balance Laws

With the collision terms (12, 15) we may write the right hand sides of (9)45 as

m 9 1 1
5;/CIndC—T—I;(gnsgznsz)— (e —e1) . (23)

—0
I

The mean free time of elastic collisions will come into play when we consider viscosity
and heat conductivity in the next section.

We finish this section with the equations (9) which may now be rewritten as

Do i _ 0
Dt Qal‘i B
Dvi  10p | 10pG) _ (24)
Dt 00x; o Oz
De 106  pOui  Pup O _ 1
Dt 00x; 00z o Oz T ’
Du 1
=—(e—e7)

Dt
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with ez given by (18) and the material derivative defined as £- = % + via%i.

Note that in total equilibrium g,, = 07, and € = 7 hold. Thus the phase density fz,
belongs to total equilibrium while the phase density fg, belongs to an intermediate
state, where the distribution function is isotropic and thermalized, but the partial
densities g, have not yet reached their equilibrium values gz, .

2.4 Entropy and H-Theorem

For the construction of the entropy balance we take the time derivative of (3) and
eliminate %% by use of the Boltzmann equation (8). The result reads

Oos | O¢x

ot " ony (25)

where entropy flux ¢ and entropy production o are given by

d)k:—kZ/cifnln%dc , a:—kZ/ln%(é’n—i—In)dc. (26)

Now we prove the H-Theorem, i.e. we prove that the entropy production ¢ is non-
negative. By means of the conservation requirements (10, 11) we find that for the
equilibrium distributions fg,, fz,, (14, 17) we have

kZ/ln%Endc:O , kZ/ln%Indc:O : (27)
Thus we may write the entropy production as
=—k / & de—k / n —I dc , 28
Z e, Z 28)
or - with (12, 15) -
== Z/ — fe.)dc + Z/ —fr,)de>0.  (29)

This completes the proof of the H-Theorem.

We proceed with the calculation of the entropies corresponding to the phase densities
fe., fz,,- The entropy for the intermediate state fg, comes out as

k k n
ngEZ/fEnln%dc—§_l T*_l *_ZQ In _+SO (30)

with the entropy constant
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s¢ has the usual Value lnT ln 0+ so for mon-atomic gases with an additional
mixing term. The latter is due to the mixing of particles with different states n.

The entropy of total equilibrium follows from (30), if one inserts the equilibrium
values of the partial densities (19). This yields

3k
szzﬁ—lnT——anJr Z i ee{=it} | IHZGXP{ }“0 (32)

n €XD{— kT}

or
3k k Z
SI:§%IHT*—IHQ+__ <Th’l eXp{ }) +50 - (33)

If £, is given by (1) with ﬁT < 1 the equilibrium entropy is given by

SI:gEInT—Ean—i—so (34)

with the entropy constant
k(5 ko [k
. myk |27
=—|=+4+In .
S0 m ( + hQ ) (35)

3 Heating

We consider a mass M of the gas in the constant volume V', so that

dM
M :/ odV and — =0. (36)
v dt
If the gas is at rest, we obtain from the integration of the balance equations of
thermal energy and vibration energy
de Q 1 du 1

_7_:7_(5751) )

7 M - & (e—e€1) , (37)

where Q denotes the heat supply from the outside, given by

s [ 94 _ .
o= / av - /8 amidA (38)

We use the linear approximation (21) and the abbreviation ¢ = % to rewrite (37)
as two uncoupled equations, viz.

_ 3y,
d(sdju):q.7 d(e—3u) . 1< 3>, (39)



H. Struchtrup: BGK model for an ideal gas with an internal degree of freedom 9

The solutions for the case of initial equilibrium, i.e. e (to) = 3ETy, u(ty) = £y,
read

t t o
g+u:§£ﬂ)h/q@3ﬁﬂ g§u:/}uﬂem<tt>dﬂ (40)
2m 2 t

to 0 T

and we find with (6) for the evolution of the temperature

t - / /
q(t) [3 2 t—t )
T =T -+ = — . 41
()Jr/1t %k [5 56Xp - dt (41)

0 m

A gas with constant specific heat ¢, obeys the equation

dT
— = 42
oy =4 (42)
with the solution
Lqt)
=T+ / a) (43)
to Cy

and comparison with (41) shows that the ideal gas with internal degree of freedom
does not have a constant specific heat. Indeed, the inelastic collisions introduce the
term ¢ (¢') exp (—t—:) into (41) which describes the fading memory of the gas with
respect to the heating ¢ (¢).

In case that all collisions are elastic we have 1/77 = 0 and find ¢, = %% as for a

usual mon-atomic gas. If there are many inelastic collisions, so that 77 < 1 on the
time scale under consideration we find ¢, = %% and the internal degree of freedom

contributes with % to the specific heat.

We consider constant heating with the rate a during the time A,

a , te(0,A)
q= (44)
0o , else,
and find from (41)
3t 2711 _t
gZ—FgZ(l—e I) , t € (0,A)
T-Ty= . (45)
—t t
31 + e e —e 7| , else.
5A  5A

Figure 1 shows the result for 77 = {1000A, 1A,0.001A}. There is a clear relaxation
for 77 = 1A due to a slow exchange between thermal and vibration energy. For 77 =
1000A the heat remains in the thermal part of the energy while in the 77 = 0.001A
case the heat is distributed immediately between thermal and vibration energy.
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Dl-—o- [\

Fig. 1: Heating: Temperature as function of time for various ratios 7.

4 The Laws of Navier-Stokes and Fourier

Equations (24) do not form a closed set for the quantities g, v;,e and u since they
contain the additional quantities p(;;y and ¢;. The aim of this section is to find
simple expressions for these quantities. Multiplication of the Boltzmann equation
by C;Cy C?C; and subsequent integration and summation gives

Dpig) Ove | 40aq  Omyijk dvjy
) 2k 27 TR I sp g —I2
Dt p<”>8xk 5 Oz oxy, EPG) oxy, +
(46)
e _ (L1
p8$j> N TE 7T Pt)
Dg; 5 1/ 90p 8p(jk> 7 Ovug 7 Ov;
— [ 206 N I — g L
Dt <3Qg J +p< ]>) % <61’] + 8xk + 5q al'k +5Qk T +
(47)
L2 0o 10mug o Ovi (1 1N
5 ox; 2 Oxy Wk Oy T TT &
with

Mijky = mZ/C(iCjCk>fndc s My = mZ/CQCiCkfndC . (48)

Now we perform a so-called Maxwell iteration [2] in these equations, i.e. we insert the
equilibrium values of the moments in the left hand sides of (46, 47). This procedure
is justified in case that a typical process frequency is small compared to the total
collision frequency

;:—-i-—. (49)
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If a typical process frequency is small in comparison with the collision frequency % of
inelastic collisions we may use the total equilibrium density fz, for the determination
of the moments of the left hand side. If on the other hand, the amount of elastic
collisions exceeds the amount of inelastic collisions we have to use the phase density
of intermediate equilibrium, fg_, given by (14). This gives the moments as

20

Pijye =05 Gije =0, myjnye =0, Myipe = 595251'1: (50)

and (46, 47) reduce to the laws of Navier-Stokes and Fourier,

Piij) = —24 o, 0 T (51)

where viscosity 17 and heat conductivity x are given by

5 k
= = — J— 2
W=Tp , K=5TD (52)

so that viscosity and heat conductivity are determined by the total free time 7. As
always in the BGK model with constant relaxation time [3] we find for the Prandtl
K 5

_ Kk _5k
number Pr = L= 2me

5 Euler Equations

5.1 Equations, Range of Validity

In the remaining part of the paper we consider the Euler case of the balance equations
(24), i.e. we set pyjy = 0, ¢ = 0. Moreover we consider only the case 72?2 < 1,
which means that (21) holds,

3 3 U
5_’[:3(8+U) or TI:ET+E (53)
2m
and obtain the Euler equations for the gas with internal degree of freedom
DQ 8112'
- -0
Dt + Qail‘i
D’U@' 1 8])
- =0 54
Dt p0x; (54)

E E@l’z T
Duv 172 3
Dt 7 \5 5"

First we have to discuss the range of validity of the equations (54). Indeed, by (49)
- (51), we may set p;j = 0, ¢; = 0 only if the total free time 7 is very small in

De  pOv; 1 <2 3 )
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comparison to the time scale of the process under consideration. In (54) we find the
free time 77 only which may be written by (49) as
1 o 1

— = with o=
T T 1+%

(55)

The coefficient o assumes values between a = 0 - when only elastic collisions occur
- and a = 1 for inelastic collisions. In the latter case we have 77 = 7 and - since 7
is extremely small in the time scale under consideration - we conclude from (54)3 4
that

e—er=0 or Tr=T (a—1) . (56)

This is the equilibrium case where the gas is in local equilibrium at every instant.
By (53) we have u = 2e7 = %T in this case.

The case a = 0 corresponds to a frozen non-equilibrium where both ¢ and u are
conserved quantities due to the fact that all collisions are elastic and the energetic
states of the particles remain unchanged.

5.2 Isentropic Laws

The equations (54) may be combined to give an equation for the total energy ¢ + u,

V1Z. D ( ) D

E+u p Do

Dt 0> Dt 0 (57)
If o = 1 holds we have total equilibrium with ¢ = Su = %%T and (57) reduces to
the isentropic law

Nt

— = const. 58
. (58)

- the equilibrium entropy (34) is constant.

If o =0 holds (54)1,3 reduce to the isentropic law

3
T
?2 = const. (59)

corresponding to constant entropy (30).

Thus we have different isentropic coefficients in the two cases. Processes for values
of a between 0 and 1 are not isentropic since there is production of entropy due to
the inelastic collisions.

5.3 Dispersion Relation

We consider the Euler equations (54) for small deviations from a global equilibrium
and one dimensional processes, i.e. we set

2
Q:Q0+é(xat) 5 Ui:(’fi(l‘,t),(),())i 5 5:50+é(1:at) 5 U:§€0+’[L($,t) (60)
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and ignore all quadratic terms in the non-equilibrium contributions 9, 9, € and 4,

00 o
E+QO£_O
06 206 2e00p
6t+36$+3g()6x_0 (61)

9 2 00 af2. 3,
ot 3%z  T\5 5

o a2, 3.
—=—(=é—-zu
at 1 \5 5
For this linear system we assume plane wave solutions
o =pexpi(wt — kx) , (62)

where w is the frequency of the wave, k denotes the wave number and @ is the com-
plex amplitude. Introducing this ansatz into (61) yields the homogeneous algebraic
system

[ iw —ikoy 0 0 17a]7
—ik3S iw —ik2 0 v
=0 (63)
0 —ik3ey iw+22 -3¢ g
|0 0 —2a iw+32 | | a]

which has non-trivial solutions if the determinant vanishes, i.e. if

1 1 /5pg 4 1
1_ 1 ooy 41 64
k wV 300 251 4 #¢ (64)

holds. Equation (64) is the dispersion relation which implies the phase velocity

Uph = goj and the damping coefficient n = —Im#k. Figure 2 shows vy, and 7 for
given 7,w as functions of a. The phase velocity has the value vy, = %% fora =0

and becomes vy, = 4 /%% for a = 1 while the damping vanishes in both cases. We

repeat that the Euler equations may only be used if 7 is small, i.e. if wr < 1. The
value wr = 0.1 in Figure 1 is not small enough to ensure 7 (o« = 1) = 0; it was chosen
in order to give a clear picture. In the intermediate region, 0 < a < 1, phase speed
and the non-vanishing damping depend on the frequency w.
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Fig. 2: Phase speed v,, and damping nas functions of « (T = 0.0001%, w = 1000%).

5.4 Shock Structure

Now we consider a stationary one dimensional shock wave for which the Euler equa-
tions (54) reduce to

L (0) =0
4 (QU2 +p) =0 (65)

ox

d P 1, _
6$<gv<s+g+u+2v>)—0
i( y=2 2__3,
dz " T T8\ T 5

v is the velocity in z-direction and - as always - ¢ = %%T We denote the fields

before the shock by oo, vg, 1o, ug and assume that the gas is in equilibrium before
the shock, such that ug = %To. The first three equations (65);_3 may be integrated
to give

kT kTy bk 15 Tk 1 5

- Pl L0 20y =L (66
ov Qovo’v+mv v0+mvo’2m +u+2v 2m 0+2v0 (66)
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If @ = 0, all collisions are elastic such that, by (65)4, u = ug = const. In this case

(66) reduce to the well-known Rankine-Hugoniot relations of a mon-atomic gas, viz.
kT k1Ty b5k 15 5k 1 5

ov Qovg,v—i-mv Vo mo 2m +2v 5 m o+2v0 (67)

If @« = 1, all collisions are inelastic and we have u = %5 = %T since the Euler

equations are only valid for 7 — 0 and the right hand side of (65)4 must be finite.
In this case (66) reduce to the Rankine-Hugoniot relations
ETy Tk 1, Tk 1

kT
ov QOUO’UerU U0+mv0’2m +2U 2m 0+2U0 (68)

Both cases correspond to discontinuous shock waves. Smooth shock structures are
only possible for intermediate values of a. The values of the fields behind the shock
-where we have equilibrium again - are the solutions of (68),

00 To 7 9 . 177
— Th==— (34— —=+5 =—|= 69
01 1 T % s L1 36 < ’Dg + v0> , U1 6 ’03 + Vg ( )
Yo

with the dimensionless speed v = v / \/ %Tg .

Equations (66) serve to eliminate o, T and u from (65)4 which - after some rearrange-
ments - reads

2 ~
s 3+ (F+E)i-1(0+3) o)
d 40 — g (@0 + 6_10>

where we have introduced the dimensionless space variable & = £ 3‘: . The
54/ =Tp
m

g

numerator of the right hand side vanishes for v = 09 = \/g so that a gas moving
with the speed %%Tg will not develop a shock structure. No shock will be observed

if 99 < \/g which corresponds to 01 < 99, 01 < 00, 11 < Tp.

For 0y > \/g the denominator vanishes in the interval (vp, v1) and the shock will be
discontinuous.. Thus we will find a continuous shock structure only, if 09 lies in the

interval <\/E, \/§>
Figure 3 shows @,T = Tl and @ — T =
0

u T

T T 88 functions of the dimensionless
- 10
m

length & for 99 = 1.01 \/Z . The shock thickness depends on the fraction of inelastic
collisions a: the shock broadens with increasing a.
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