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Abstract

In this paper a new set of moment equations in relativistic kinetic theory is presented. The
moments under consideration are the projections of particle 4-flux and energy momentum tensor
with respect to the Eckart velocity or the Landau—Lifshitz velocity, alternatively. The moment
equations follow from integrations of the relativistic Boltzmann equation in which the interac-
tions of the particles are described by the relativistic BGK model for reasons of simplicity. The
projected moment formalism is extended to an arbitrary number of moments and moment equa-
tions and it is shown that the non-relativistic limit of moments and moments equations leads to
the so-called central moments of non-relativistic theory. The moment equations may be closed
by means of the entropy maximum principle. After this method has been outlined, the closure
is performed for the case of 14 moments, i.e. the projections of particle 4-flux and energy mo-
mentum tensor. Moreover local thermal equilibrium is considered where the projected moment
formalism is used for the derivation of the relativistic Navier—Stokes and Fourier laws. Differ-
ent choices of moment equations for this task are compared and it is shown that the proper
choice of moment equations depends on the interaction term in the relativistic Boltzmann
equation. (©) 1998 Elsevier Science B.V. All rights reserved

PACS: 47.75; 52.60; 51.10; 47.70
Keywords: Relativistic kinetic theory; Moment method; Chapman—Enskog method; Entropy
maximization

1. Introduction

The objective of relativistic thermodynamics is the calculation of particle 4-flux N4
and energy momentum tensor 7“5, The conservation laws for particle number and
energy momentum,

N4 =0, (a)
T 5=0, (1b)
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provide five equations for the determination of the 14 elements of N4 and 7“8, Thus,
nine additional equations are required in order to have a closed system. The usual
procedure in relativistic thermodynamics is to assume an additional equation which
reads

AABC,C :PAB . (2)
Here A45€ is a completely symmetric 4-tensor with
AABB :mZC2NA , (3)

where m is the particle mass and ¢ is the speed of light. The trace of the production
tensor P42 must vanish due to Egs. (la) and (3),

P, =0. “)

The form of Eq. (2) as well as the properties of 448¢ and P42 are motivated from
the relativistic kinetic theory and will be derived later in this paper. Eq. (2) gives nine
equations since its trace is equal to Eq. (1a). But still the system is not closed since a
priori A4B€ is not related to N* and T“Z. The closure requires constitutive equations
which relate the new quantity 442¢ to N* and T“2. For the various methods of closing
we refer the reader to the literature [1-9]

In this paper we present an alternative approach which involves moment equations
for the projections of N4 and 7“2 with respect to an observer velocity — quantities
with physical meaning — rather than a moment equation for the abstract quantity 445€.
We shall use the formalism of projected moments which was introduced in relativistic
kinetic theory of radiation by Thorne [10], see also [11-13].

It will become clear in the sequel that the projected moment formalism distinguishes
one observer frame which has physical significance. The variables under consideration
are the relativistic generalizations of the moments measured in this observer frame. In
relativistic thermodynamics one has the choice between the Eckart frame, where the
particle flux vanishes and the Landau—Lifshitz frame, where the energy flux vanishes —
both frames will be considered in this paper.

For reasons of generality, we shall develop the theory for an arbitrary number of
moments and perform the restriction to the projections of N4 and 7“8 later. In partic-
ular, we shall emphasize the strong relationship between the use of projected moments
in relativistic kinetic theory and the use of central moments in classical kinetic theory.
Since the choice of the moment equations is not affected by fine details of the particle
interaction processes, it is sufficient in the present context to rely on the relativistic
Boltzmann equation with the BGK-model for the collisions. Most of the paper deals
with the relativistic BGK model of Anderson & Witting [14], but we shall also use the
model of Marle [4] for discussions.

The paper is organized as follows: In Section 2 we introduce the basic quantities and
equations of relativistic kinetic theory. In particular, we define the phase density and
some of its moments — particle 4-flux and energy momentum tensor — and present the
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relativistic Boltzmann equation with BGK model. Section 3 contains the definition of
projected and unprojected moments and the derivation of the moment equations from
the Boltzmann equation. Here we also discuss the non-relativistic limit of the moments
and show that the projected moments reduce to the central moments of classical kinetic
theory. The set of moment equations is not closed and Section 4 deals with the closure
by means of the entropy maximum principle [15,8]. The principle is formulated for an
arbitrary number of moments but we perform the explicit calculations only for the case
of 14 moments, particle 4-flux and energy momentum tensor. The resulting system of
field equations differs from the usual Eqs. (1) and (2) and Section 5 discusses the
differences in the case of local thermal equilibrium. We use a Maxwellian iteration
procedure to obtain the relativistic Navier—Stokes and Fourier laws and show that the
results depend on the choice of moment equations. Moreover we compare the results
with those which follow from the Chapman—Enskog method and give reasons that the
proper choice of moment equations depend on the details of the BGK model under
consideration.

2. Phase density, moments and relativistic Boltzmann equation
2.1. Basics

We restrict ourselves to flat space time with space-time variables
xt={et,x'},  4=0,1,2,3,

where ¢ denotes time and x’ denotes the space variable, the Lorentz metric is given by

. { 1 0 }
4B = .
0 =0y ) p

The particle 4-momentum is denoted by

p'={p"p'}, (5)

where cp® is the energy of the particle and p' is the 3-momentum. The absolute value
of p? is constant,

P pa=p'pPns=")Y — p'p'=m’c*, (6)

and the 3-velocity of the particle is given by
ety %)
p
Hence, follows a relation between particle energy and velocity which we shall need
later, viz.

0 me

v ®
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Observer 4-velocities are denoted by U4 with
vl =¢* 9)
and in the observer’s Lorentz rest frame (LRF) we have
Ufzp={¢,0,0,0}". (10)
We shall also make use of the spatial projector
1

AAB:V]AB——ZUAUB, (11)
C

which has the following properties:
AU =0, A Ape = A, A, =3. (12)

2.2. Phase density

We consider monatomic ideal gases whose state is completely described, if the phase
density f(x?, p') is known. The phase density is defined such that

fGt pHhdx dP,

gives the number of atoms in the element dX dP = p°d*xdP [4,1]. Due to this defi-
nition f is an invariant scalar. dP denotes the invariant momentum space element

d3
ap="L (13)
p
The particle 4-flux and the energy momentum tensor are moments of the phase density,
given by

NA:c/pAfdP, TAB:c/pAprdP. (14)
The entropy 4-vector is given by [9]
SA:—kc/pAflnzdP, (15)
y
where y = const is the volume of a phase-space cell and & denotes Boltzmann’s con-
stant. This definition follows from considerations on the relativistic Boltzmann equation.
It should be mentioned that we need the definition of entropy (15) as an additional

input in our considerations since we do not consider the Boltzmann interaction term
but only the BGK relaxation model, see below.

2.3. Decomposition of p

We consider an observer with 4-velocity U4 and decompose the 4-momentum into
one part parallel to U and one part perpendicular to U4 [10,13]

1
p? :p?LREUA + R with R1U; =0. (16)
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Because of

P|ALR = {p(\)LR’ RiLR} (17)

Cp|0LR is the particle energy in LRF and R? is the covariant generalization of the
3-momentum in LRF. We have

1
p?LR = PAEUA (18a)
and
R = pPA'y with R'Ry=m*c® — (p) ). (18b)
By means of Eq. (16) we may decompose the moments (14) according to

N4 =npU4 +J4,

AB 1 ArrB A1 B B1 A AB (19)
T = e U'UP + F/-UP + FP-U" + P*%.
C C C
The newly introduced quantities are defined as
n:/P?LRfdP, JA:c/RAfdP,
(20)
ezc/(p?LR)zf'dP, FA:c/p(l)LRRAfdP, PAB:C/RARdeP
with
JUyy=0, Fiy;=0, PB=0. (21)

These quantities are covariant generalizations of moments measured in LRF: 7 is the
particle number density, J4 is the particle flux, e is the energy density, (1/c)F* is the
momentum density and P42 is the pressure tensor. The trace of the pressure tensor is
related to the pressure p by

—3p=P4,. (22)

The vectors and tensors under consideration have no parts in the direction of U4 (21):
they are projected in the plane perpendicular to U“. That is why we speak of projected
moments.

2.4. Eckart and Landau—Lifshitz velocities

The decompositions (16) and (19) may be performed with respect to any observer
velocity U4, but there are two choices with physical meaning: We may choose the
observer frame such that the particle flux vanishes. The velocity of this frame is called
Eckart velocity W4 and we have [9]

NA = I’IEWA 5

as_ Vs alop Bl AB (23)
T7 =epWW" +F—W" +Fg -W" +Fg” .
c c c
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The Landau-Lifshitz velocity ¥4 is defined such that the momentum density vanishes
and we have [9]

N =ny VA + I,
AB 1 A1/B AB (24)
T = eLLgV V +PLL .

Almost all decompositions and projections in this paper are meant to be decompositions
and projections with respect to one of these two velocities.

2.5. Equilibrium phase density

In this section we determine the equilibrium phase density f; which we need as
input for the relativistic BGK model. We employ the entropy maximum principle which
we will use later in this paper also to determine non-equilibrium phase densities.

We know: (i) The equilibrium state of the gas under consideration is determined
completely by the conserved quantities number density n, energy density e, and mo-
mentum density F4. (ii) The entropy density 5 =(1/c?)S4U, reaches its maximum
value in equilibrium. Thus, the equilibrium phase density is the phase density which
maximizes

C

| X
n:—zSAUA:—k/p?LRflnédP, (25)
under the constraints of prescribed values for n, e and F4. Note that U4 may be any

observer velocity in the present context. We take care of the constraints by Lagrange
multipliers and maximize

_k/P(\)LRflngdP—in (/p?LRfdP—n>
1
—/e (/(POLR)ZfdP i) — /4 (/p?LRRAfdP CFA>

without constraints. We obtain
1 ,
fE_yeXp{_l_%[/ln'i‘/bep?LR"_/{ARA]}: (26)

where the A’s are functions of n, e and F4. In particular we must have 14 =y(n, e, F BE,
so that 1, =0 in the Landau-Lifshitz frame, U* = V4. Therefore, we may write

. 1
S =t exp{=pepy,} with ply = p'Vi. (27)

o/ and f are abbreviations which replace 4, and 4.; they follow from the constraints

mi= [ Hufiedr, ew=c [0 fpdp (28)
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as [7]
1
ﬁ = T4
kT
nrr . mcz (29)
of = = with z=——.
dn(me/z)> [ e77\/y* — 2%y dy kT

T is the thermodynamic temperature which may be identified via the Gibbs equation [7].
The equilibrium values of the moments follow from Eq. (14) with Eq. (27) as

Nrj;,::nLLVA,
AB 1 Ay/B AB (30)
T|E :eLLC_ZV 14 _pLLALL .
where
1
AB __ AB Ay B
ALL_n —EV V.

From Egs. (30) and (19) we conclude that the equilibrium particle flux J|AE vanishes
in the Landau—Lifshitz frame. This means — according to Eqs. (23) and (24) — that
there is no difference between Eckart frame and Landau-Lifshitz frame in equilibrium.
Energy density e;; and pressure p;; in Eq. (30) are related to 7 and n;; by

pre = nukT
me? [ eIV — 22yt dy (3
e =ny—— -
z [Te/yr—2ydy

The calculation of the relativistic equilibrium phase density is due to Jiittner [16].

2.6. Relativistic Boltzmann equation with BGK model

We follow Anderson and Witting [14] and write the relativistic Boltzmann equation
with BGK model as

P fa= VS~ fi). (32)

Here 7 is a relaxation time which may be interpreted as the mean collision-free time
of a particle, measured in the Landau-Lifshitz frame. See Appendix A for a short
motivation of Eq. (32).

Integration of the Boltzmann equation gives the balance of particle number density,

1 1
N* 4 :_EVA(NA - Nr%):_zm(nLLVA +Jfy — V) =0, (33)
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where we have used Egs. (24) and (30) and V,J7, = 0. Multiplication of Eq. (32) with
p? and integration gives the energy-momentum equation,

1
TAB’B _ 7@%(]”43 o TlAEB)
— Ly Lyays s Lyays 47 ) =0 34
=—a Vlen + P e —pudi; | =0, (34)

where we have used Egs. (24) and (30) and P/ 32V =0, A4;2 V3 = 0. Thus, the relativistic
BGK model guaranties the conservation of particle number, energy and momentum.

It should be noted that Marle [4] presents an alternative relativistic BGK equation,
viz.

m
P fa=="0 = fun). (35)
Here f); is a phase density of the form

Su :geXP{_VCP?LL} (36)

where 4 and y must be determined from the conservation requirements

V=" [ podr=o. 15— [ pis - finap=0. (1)
Thus, fy is not the equilibrium phase density. We prefer the Anderson—Witting version
of the BGK model, because it has the same features as the classical BGK model [17],
i.e. f|g is the equilibrium distribution and one finds the same moments of the phase
density on the right and left hand side of the moment equations, see Eqs. (33) and
(34) and Eqgs. (46) and (53) below. Moreover, it gives a proper interpretation of the
relaxation time: 7 is the mean collision-free time of an atom, measured in the Landau—
Lifshitz frame. We will come back to Marle’s BGK model at the end of Section 5.

2.7. Balance of entropy, H-theorem

We end this section with the proof of the H-theorem for the relativistic BGK model.
The divergence of the entropy 4-vector (15) reads

SA’A:—kC/pA <1n§+1) f;AdP

kVA/pA<lnf+1>(ffE)dP—a, (38)
y

CcT

where ¢ is the density of entropy production. Due the conservation laws for particle
number and energy momentum we have

5VA/pA <1nfE+1>(ffE)dPO. (39)
cT y
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We subtract this from Eq. (38) and obtain

/i

o is always positive — i.e. the H-theorem is valid.

k
st=ati [ w7 - fipar=o=0; (40)

3. Moments and moment equations
3.1. Unprojected moments

We define unprojected moments of the phase density by [11,10,13]
At =c / (Pl) "V pt e pf P, (41)

Because of p?LR =(1/c) pU; this definition distinguishes the frame which moves with
velocity U4. The unprojected moments are fully symmetric 4-tensors with the following
properties:

1
A;“l"'AN_l]AN :Afl"'AN—l , (42&)
C

A Ay _2An 1 _ 22 A1 Av—2
A; Ay =Mmc¢ Ar72 : (42b)

The moments with r =N — 1 are the usual moments of relativistic kinetic theory and
are independent of U4,

At e [ pte ptpap. (43)
Particle 4-flux and energy momentum tensor are unprojected moments by
N4 =4, T48 — 448, (44)

Because of Eq. (42a) they are contained in the moments AS’ oAV (N >1) and Afl"'AN
(N =2), respectively.

Multiplication of the relativistic Boltzmann equation (32) with ¢( p? LR)”N pl piy

1/p° and subsequent integration over d°p yields the moment equations for the unpro-
jected moments. With use of the identities

1
PA,BZO, (p?LR),A:ZPBUB,A, (45)
we obtain
1 1 1
A;41~~ANB’B 4 (N _ r)A;Al]u.ANBCEUC’B :_E(A;‘hu.ANB _ A;“|~~ANB|E)EI/;3 s (46)

where we have defined the equilibrium values of the moments by

Afl...ANB‘E:c/(p(‘)LR)rprAl P fipdP (47)
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3.2. Projected moments

We define projected moments by
M :c/(p?m)’“—"}e/" <R fdP. (48)

Comparison with Eq. (20) shows the physical interpretation of some of the projected

moments
My=cn, MOA =J4,
My =e Mt =F* M8 =pi8 9

The relation between projected and unprojected moments follows by means of Egs.
(18a) and (18Db) as
MrAl...A" :AAIBI . 'AA"B,,AEIMB" . (50)

By means of Eq. (16) the moments (41) may be decomposed as

N

A = Z@) MOy g, (51)

o
k=0

where the brackets indicate symmetrization. Due to Eqs. (16), (18a) and (18b) the
projected moments have the properties

1
Ay---A, Ay--Ap—2A4,— 2 2agd1 A Ay-Ap—
MU, =0, Mt =M e (52)

n

Multiplication of Eq. (46) for N =n with 44,5 ... A, B yields after some rearrange-
ment the moment equations for projected moments,

DMrBl"‘Bn 4 VCMVBI B, C

+1DIJD {(l’l —r— I)M-BIWB”D + nyID(BIM.Bsz”) + nlU(BerBszn)D}
¢ C
1

+EVCUD {(n — P)MPBBACD |y Br By CD

1
P B B BC n- U Mfz---Bn)CD}

1 1 1
R (AR VS E AN R VA BT R

The abbreviations D and V¢ stand for the covariant generalizations of the partial deriva-
tives in LRF with respect to time and space, respectively,

1 1
DY =-U“Y,, VeW =42¥,  so that ‘I{C:zUCD‘P—&—Vc‘P. (54)
C
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The moments of the equilibrium phase density which appear on the right-hand side of
(53) are defined by

MP B :c/(P?LR)rH*"RBl R fipdP (33)

and will be calculated in the next section.
3.3. Moments of the equilibrium phase density

3.3.1. Relations between decompositions

We proceed with the calculation of the equilibrium moments (55). The equilibrium
phase density (27) is isotropic in the Landau—Lifshitz frame which differs, in general,
from the Lorentz rest frame under consideration. Indeed, we have the decompositions

1 1
p'=ple U +RY pt =l vt St (56)

where S4 is the 4-vector generalization of the 3-momentum in the Landau—Lifshitz
frame. In order to calculate the integrals we need the following relations between
p(l)LR,RA and p(l)LL,SA:

1 1
p(|)LR = P?LLg VAUA + ESAUA 5
1 1

1 1
4_ 0 4 B A A B 4
R —plLL(;V —czV UBEU )+S _CZS UgU” .

(57)

U4 is either the Eckart or the Landau-Lifshitz velocity. We assume that the difference
between both is small which is true for processes not too far from equilibrium and
write

vAi=U"+wt. (58)

In the following, we shall neglect all second-order terms in w4. We have

1 1 2 1 2
l==VW=5UU + SU s+ 5wy ~ 14+ S U wy (59)
C (& C C C
and conclude that
Ulw,=0 (60)
and hence
1
ViU =1
C

in this approximation. Thus, Eq. (57) reduce to

1 1 1
Plir=pl — ZSAWA, RY= p?LLEWA + 8%+ ;SBWBUA . (61)
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3.3.2. Equilibrium moments in the Landau—Lifshitz frame
We define the equilibrium moments with respect to the Landau—Lifshitz frame by

mie b= [l s fpa. 2

S| is isotropic in the Landau-Lifshitz frame such that

mi=0,

me = VDALL = 3(m ¢ my—2 — m,)ALL >

m!?¢ =0, (63)
m:lBCD — ]lSmrF G(AABACD+AACABD +AADALL)

mABCDF _

”

and so on. Therefore, we need to calculate the scalar moments m, only. Using p°=
Vm2c2 + p? (6), where p? = p’p’, the phase density (27) and (13) we may write

® 2 " 2 2
P ] p mc P
=./c(mc) / 1+ ) exp {_ﬁ 1+ m2c2} &p. (64)
0

With the substitutions mc?/kT =z, y=z+/1 + (p/mc)* we obtain

= (mc)’ moj0 (65a)

where

— [ ey =22yt ay. (65b)

z

The integrals /.(z) may be expressed by modified Bessel functions of the second kind
K,(z) by means of the recurrence formula

(I" - 1)],_3 :(l" + 2)11 - Z(Ir - Ir—2)
with 1_, =2°K,, ly=2°K>, I, =3zK, + 2°K . (66)

It is not possible to calculate the integral /_,(z) from Eq. (66); therefore, /_, must be
determined numerically. For the derivatives of I, with respect to z one finds
dl.(z)
dz

7(1r 2_1)_ r—1 - (67)

3.3.3. Equilibrium moments in other frames
Now, it is easy to calculate the moments (55) in the limit of small velocity difference
w4 in terms of the m® B+, In this paper we shall need only the moments up to rank
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n=4; they read

MV‘E =my,
1
MVA‘E = (mr gmrDD) —w,
c
M\ = 3mPpa®? (68)
M;‘IBC‘E _ lm?D B r—meFGG ABClwA +AAC1WB+AA31WC ,
3 15 c c c

MABCDlE — l_lsmf'FGG(AABACD + AACABD + AADABC) .

3.3.4. Linearized productions
The right-hand side of Eq. (53) may be called production of M55

1 1 1
H”&:—E{wﬁlm—MﬁﬁmgmuﬁHMﬁB“—M““mkm}.

(69)

We ask for the values of the production in case of small deviations from equilibrium.
We introduce the small velocity w* into Eq. (69) and assume that the differences
between the moments and their equilibrium values are also small. Keeping only terms
which are small in first order we obtain

1
phhe_ E(Mrgl,..g,, _MP. (70)

Note that this and the following formulae for the productions are exact in case that
Ud=rA.

Due to the conservation laws of particle number (B =0), energy (P, =0) and
momentum (P! =0) follows:

mo=My=cn,
m =M, =e, (71)
1
(my = smPp)—wit =Mt =F*,
c
where Eq. (49) has been used. Thus, mg/c and m; are the local particle density and

energy density, respectively, and w* is proportional to the momentum density. With
1/3m?D =—pr. =—nkT, we may write

A ¢ A ¢ A
"My +dpn) T (e+nkT) (72)

Of course, we have wi=F4 =0, if the theory is based on the Landau-Lifshitz frame.
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With Egs. (68) and (72) we may write the productions for n=0,1,2 in terms of
the projected moments MZ1%: as

1 1.
P= o (M= ey ).
cT Iy
1 — Ir - 7/3(]r—2 - ]r)
Pl=—— (M~ -l M 73
; CT( R e v VR AL (73)
1 1 I, —1,
I)rABi - MrAB o 7(mc)rM027AAB ,
cT 3 Iy

the integrals 1. =1,.(z) are given by Eq. (65b) as functions of inverse temperature z =
mc?/kT. Eq. (65a) may now be written as

L M
Iy mcMy’

I
mr:(mc)ngl—, r=2,3,... and (74)
0

where the last equation defines the temperature.

3.4. The non-relativistic limit

3.4.1. Projected and central moments
In order to interpret the projected moments (48) in the non-relativistic limit we
investigate them in the LRF,

MP B g =c / (Pler)" "R RS dP (75)

Because of RfLR =0, pi LR}A only the spatial components do not vanish. With dP =
d3p|LR/p?LR we obtain for these
Cpl|1LR ' cPi"LR

M g =" /(P?LR)F P - P [ dpjir - (76)
LR LR

By Eq. (7) the velocity in LRF is given by

Ci:éiLR: 0 7

f d3p| 1z 1S the number density of particles with momenta in the vicinity of pi (g 1IN

LRF. We denote the number density of particles with velocities in the vicinity of C'
by Fd3C, so that

Fd’C=fd’px . (78)
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Eq. (8) reads in LRF p?LR =mc/+/1 — (C%/c?) and we may write instead of Eq. (76)

M = (me)"c! ... .ChFdC, (79)

1
n / S
V1 —(C?/c?)
where the interval of integration is bounded by the speed of light c.
The basic assumption for the non-relativistic limit is that the particles have speeds
far below the speed of light, so that

o C? . . 1
M;""’”LR:(mC)rCl_n/<1 + g?)cll L ChFJPC + @(F) . (80)

In this case the phase density F' vanishes far below the speed of light, so that the
integration may run to infinity now. We define

u;;l.ni,,:m/cﬂfcil_._Cian3C, (81)
so that
TR A e L e A N A s
M pr =2 (me) e ug +c_2§u1 +- . (82)

The LRF under consideration is either the Eckart frame with Mg'=0 or the
Landau-Lifshitz frame with M{'=0. If only the first-order terms in 1/c are consid-
ered in Eq. (82), both frames correspond to uh=m [ C'Fd*C =0. Since u is the
non-relativistic momentum density of the gas, we have to interpret C' as the velocity
measured in the rest frame of the gas, where the momentum density vanishes.

Therefore the u}{" are the so-called central moments of the phase density. We give
a list of those central moments with physical meaning,

u():m/Fd3C:Q, ugzm/CiFd3C:O,
uf{:m/cfchd3c:p"f, ulzm/Cde3C:2Q8, (83)
uﬁ:m/czc"ch:qu’.

Here ¢ is the mass density, p” denotes the pressure tensor, ¢ is the specific internal
energy and ¢’ is the heat flux [7].

Obviously, we have p’; =2¢¢ such that Eq. (83) gives a list of 13 quantities and
these are the basic variables of the non-relativistic moment theory, see [18,8].

The natural choice of variables in relativistic moment theory consists of the 14
moments (49) which are related to the non-relativistic central moments (83) by

My r=cn=>= o, M(§|LR:Ji|LR:0,
M |r=e=~oc" + ge, Mf|LR:Fi|LR2%qi; (84)

Ml"l.‘LR ~20¢+ %%uz, Ml(lj) R = pli) LR Pl
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Here we have followed Dreyer and Weiss [19] who suggest that the moment u, =
m [ C*F d*C should be considered in non-relativistic theory. The brackets denote the
trace-free part of a tensor.

In Eq. (84) we have considered the Eckart frame as the basis for the non-relativistic
limit, i.e. we have Mél ;r=0and M| |1z # 0. If we rely on the Landau-Lifshitz frame
and consider terms up to second-order we have Mél 1 7 0 and MI’| IL :mc(Mé‘ ot
(1/mc*)g')=0. Thus, we identify the non-relativistic limits of Mg and M{! in the
Landau-Lifshitz case by

i 1 i
O\LL:—@CI, M1|LL:0’ (85)

while the limits of the other moments are as in Eq. (84).

3.4.2. Moment equations
We ask for the moment equations (53) in a laboratory frame which moves only
slowly relative to the gas. The 4-velocity of the gas in the laboratory reads

1 .
U= ———A{c, v},

V1= (?%/c?)

where v’ is the 3-velocity of the gas . In the non-relativistic limit we neglect all terms
of orders ((v?/c?) so that

UA = {Ca Ui}Ay UA == {C> 71)1’}/4 5

1 /oY oY 1 DY oY
DY =~ — +* =-— Y=350,— ¢ ,

c(@t +U@x") ¢ Dt’ Ve {’Ox‘}c

(86)
0 0

1 1 Ouy 1 /
-DUy =<0, — =5 — -VcUp =
c {’ 2 ot }A’ ch P 1 dvy

Pocaxd Jop
Furthermore, the vector R4 transforms in this limit as
4
4 _ [ Uk k i
R = {?P\LR»PiLR}
so that the moments in the laboratory are related to the moments in the rest frame by
iy iy ieeeig0 _ Uk g riyigk i1+++i,00 v’
M = M g, M = ?M‘ " |LRs M =0 2 (87)

Consideration of the space-time components of Eq. (53), i.e. setting B; = i yields with
Eqgs. (86), (87) and (82)

Do o L ak
Dt P R L

v
Ox!

I(iy, f2--+in )k
0" Mg
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iy i eeink :
l r Du’ll i N 61,{‘11 i i opt ui i, 6 k i, n nal)k 51(””,2 Yk
2 Dt Oxk ot ox! !

a2
1 vk ieik vk iy einkl
+C—2{—E(n—r—1)u0‘ 1(”_ U

1 i i 171 ieeed
==~y E) — ——(u ), (88)

where all terms of order ()(v?/c?) have been neglected. The equations for the central
moments u; " follow by omission of all terms with 1/c?

Duf)l L 6148 L . nav(“ i) i ov 0 widy n n%él(il uf)z...in)k
Dt Oxk ot Oxk ox!
_ 1 i1-e+ip iy
_—;(u0 —uy "E), (89)

while the difference of Eq. (88) with »=0 and r=1 gives the equations for u’i""i",
viz.

Dul i gylik gl v v
U n U —— ”11 ln)+ ﬁ i 4y /;51(11 i+ )k
Dt Ox ot ox Ox
(90)
—_ al)k l| ink o al)k l| l,,kl (H <y )
o ax! 0 £

Egs. (89) and (90) are the appropriate moment equations for the central moments (81)
of non-relativistic kinetic theory, see [7].

Thus, the projected moment formalism reduces to the formalism of central moments
in the non-relativistic limit or, in other words, the projected moment formalism is the
relativistic generalization of the formalism of central moments.

4. Relativistic extended thermodynamics with projected moments
4.1. Choice of variables

The objective of relativistic thermodynamics is the determination of the 14 fields of
N4 and T48 or, alternatively, of the 14 projected moments number density M, energy
density M, particle flux M;!, momentum density M{! and pressure tensor M{'8.

It is customary in relativistic kinetic theory [4,5,7,9] to determine the 14 fields

NA=4y and T8 =4{%,
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from the 14 moment equations for 4{# = T4 and 455€ - with 4585 =m*c* 4] = m?c?
N4 — viz.
A% p=0, (91a)
1 .
ALBC = _E(A;‘BC — A35C e with (454C — 4546 p)Ve= (91b)

The trace of Eq. (91b) implies the conservation of particle number.
The set (91) of unprojected moment equations is equivalent to the moment equations
for the projected moments

My, M My, M3, M2 (92)

and — since the moments M,, M;!, M;'® have no physical interpretation — this choice
of moment equations is somewhat artificial.
To us it seems far more reasonable to determine the moments

Mo, Mg, My, M, M™%,

from their associated moment equations. These may easily be combined to the 14 equa-
tions for the unprojected moments 43 and 4{5¢ — with 47% % Uz =N and A’fBC% Uc=
T48 _ which read (46)

1
A8 5+ ASIBCE Ucs

1
= —— (48 — 14 ith (438 — VsUy;=0,
cr( 0 0 |E) 5 with (4j o |E) BU4 (93)

1
AfBC,C+AfBCDEUD,C
1 1 .
= AP APC Ve with (415 — AP VcUp =0,

It should be mentioned that both sets of moment equations (91) and (93), reduce in
the non-relativistic limit to the equations (89) and (90) for the central moments uy,
uy, ua, ub, u} and ug.

4.2. Moment equations and closure problem

The equations for the projected moments M, Mé", M, MIA, MIAB read, in particular,
Balance of particle number

1 1
DMy + VpMP — —DUpMP + -V pUPMy=0. (94)
C C
Balance of energy:

2 1 1
DM, + VpMP — EDUDMID - Ve UpMP + EVDUDMI =0. (95)
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Balance of particle flux:
1 1
DME + Vv eMEC + ~DU) {nDBMo + —UBM(?}
c c
1 1
F VU {M(?CD + MERCP 4 yPEME + _UBMOCD}
c c
1 I
=—— (MéB — chMlB> . (96)

€T I — 31— 1)

Balance of momentum:

1 1
DME + VvV eMEC + -DUp {M{” +1”2M, + . UBMlD}

1 1
+-VeUp {M{‘nCD + ML + . UBMFD} =0. (97)
Balance of pressure tensor:

1 1
DM{® 4+ V cM{E¢ + ~DUy {ZnD(AMlB) +2- U(AMIB)D}
C C

1 2
+Cde{M#m>+Mﬁ¢m+2¢mMPc+cUuMPw}

1 1 I —1
= —— (M — ZmeMy——L 418 . (98)
cT 3 Iy
It should be kept in mind that the 4-velocity U“ is always meant to be either the
Landau-Lifshitz velocity ¥4 or the Eckart velocity W<4. Thus, it is related to the
moments and no additional equation is needed for the determination of U4. We have
either
Ut=v4 and M{!=F*=0 or
(99)
Ut=w* and M =J"=0.
The set of 14 equations (94)—(98) does not form a closed set of field equations for
the variables

Mo, Mi', My, M{', M{"* (100)
because the equations contain the additional moments
MEC, MBCD, MABC | pfaABCD (101)

In order to obtain a closed set of field equations we need constitutive functions which
relate the moments (101) to the fields (100). We follow the philosophy of rational
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extended thermodynamics [8] and search for constitutive equations of the form
MG = Mg (Mo, Mg, My, M, M) |

My =M (Mo, M¢', My, M{', M),
(102)
M€ = MPP (Mo, Mi!, My, M, M%),

M{BP = M{BP (Mo, My, My, M}, M{'®) .

Note that gradients or time derivatives are absent from the list of variables. The func-
tions (102) will be determined by means of the entropy maximum principle which is
equivalent to the theory of rational extended thermodynamics [15]. Thus, all features of
rational extended thermodynamics will be contained in our theory. In particular the re-
sulting field equations will be of symmetric hyperbolic type. This guarantees well-posed
Cauchy problems and finite speed of disturbances.

4.3. The strategy of extended thermodynamics

At this place a remark on the strategy of extended thermodynamics is in order: The
moment equations (53) form an infinite set of coupled partial differential equations.
The moment equation for M5B+ contains the moments M2 B:C and MP15:CP g0
that we find an infinite hierarchy of equations with increasing tensorial rank for each
value r. In general, the hierarchies for various r are coupled by the right-hand sides of
the moment equations, see [13] for the case of radiation. We do not have this coupling
in the present case due to the simple interaction term of the BGK model.

Thus the Boltzmann equation is replaced by an infinite set of moment equations
for moments with all possible values for the numbers » and n. The assumption of
extended thermodynamics is that this infinite set may be truncated at a certain level,
for instance at »=0,...,R and n=0,...N, with some numbers R and N, so that one
has the equations for the projected moments

MAA r=0,....R, n=0,...N, . (103)

This set of moment equations requires constitutive equations for the moments

A]“-AN"C Al-HANrCD
s

M , M r=0,....R (104)

and in extended thermodynamics these constitutive functions are assumed to have the
form

M TAE e C BBy =0, Ry m=0,...N,),
(105)
M;ql.»-AN’,CD :M;‘l[-nAN,.CD(MSB]...Bm; SZO,...,R; m:O,Nr) .

If a certain process is not satisfactorily described by the resulting set of field equations,
one has to increase the numbers of moments R and N, step by step until the resulting
set of field equations describes the process under consideration with sufficient accuracy.
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The most simple choice of variables is to choose the numbers r,N, as r=0,1
and No=0,N; =1, i.e. to consider the five conserved quantities cn =My, e =M; and
FA=M;{" only. In this case extended thermodynamics — or the entropy maximum prin-
ciple — gives the equilibrium values for the required constitutive equations J* = M;!
and P48 = M8 ie. J4=nV" and P2 = pA{B. The resulting field equations form the
relativistic Euler equations, which describe gases in equilibrium.

In this paper the emphasis is laid on the case of 14 moments, »=0,1 and Ny =1,
N; =2, which describes only slowly varying deviations from equilibrium.

4.4. Entropy maximum principle

The definition (48) shows that we will find the required constitutive equations (105)
if the phase density f depends on space time only through the variables,

f=fMErBn(x?), s=0,...,R, m=0,...N,; p'). (106)

The entropy maximum principle states: the phase density (106) follows by maximiza-
tion of the entropy density with respect to f under the constraint of prescribed values
of

M :c/(p?LR)H'l_”RA‘ --R™ fdP, r=0,....R; n=0,...N,. (107)
For reasons of simplicity we maximize the entropy in LRF where it reads
[ 0 S
n=—58"Us=—k | pjjpf In—dP. (108)
¢ y

We take care of the constraints by Lagrange multipliers and maximize

S
fk/p?LRf In = dP
Yy
R N,
- ZZAZy--An (c/(pOLR)r+l_nRAl S R fdP—MrA'mA”>
r=0 n=0
without constraints. The result reads
R N, c
f=yexpZ with T=-1-) %" Agl,,.An%(p(l)LR)"_”RA‘ o RA (109)
r=0 n=0

where the A’s are functions of M5 1*2» and follow from the constraints.
Unfortunately, it is impossible to perform the required integrals over the phase den-
sity (109). For this reason, we shall expand it around equilibrium. The equilibrium
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phase density (26) may be written as
. 1
fle=yexp2ip with Xjp=-1- %[in + )Lep?LR + J4R] (110)

and comparison with Eq. (109) shows that we have for the Lagrange multipliers in
equilibrium

| 1 | .
A?E = E)”m /1|IE = Zley /1/11|E = Z;~A, AY,..4, =0 (for all other r,n).
(111)
We write
r r k r
Ayon, = Agyoa, £ T E;‘AlmA,, (112)

and assume that the non-equilibrium parts of the Lagrange multipliers /) .., are small
such that

R N,

§ ar ¢ r—n

f:f‘E (1 — /LAI...An%(p?LR) IQAl ._.RAn> . (113)
r=0 n=0

In the next step, the Lagrange multipliers have to be determined from the constraints
(63). This will be done in the next sections for the 14 moment case.

4.5. Phase density in the 14 moment case

In the case of 14 moments, » =0, 1 and Ny = 1, N; =2, the phase density (113) reads

R4 RARB
f:f‘E (1_20_/12170 _)"IPOLR_)"LRA_i}‘iB]?O> (114)
| LR | LR

or, with oy =(1%/c)Uy + ig and B =(A/cHUUp + (I/C);V(IA Uy + ;v}qB,

4 4 B

p pp

S=fle|{l—owu—5— —Buis—H— |- (115)
Pi1r Pir

This non-equilibrium phase density seems to be new in the literature. In [1-9] the

authors use a non-equilibrium phase density of the form

f=115(0 = dap" = Bsp' PP, (116)

a form which follows from the entropy maximum principle if the theory is based on
the unprojected moments M,,A""A" with r=1,2 and Ny =1,N, =2.

Thus, we do not only propose an alternative set of moment equations in this paper
but we propose also an alternative phase density for the closure of the equations.
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577
4.6. Lagrange multipliers in the 14 moment case

For the explicit calculations it is convenient to write instead of Eq. (114)

1 Al RA
f:f‘E (1—)\, 10——10_1 p?LR_AO

P —)QRA _ AEAB)@
0 E 0 ’
p|LR p\LR p\LR

(117)

Al
where 27! =—12}4, 4" ="+ 12}, The brackets denote the trace-free part of a tensor,
for instance, R“R) = RARB + 1RPRp A5,

With the phase density (117) we calculate the moments My, Mg!, My, M{!, M{"® and
obtain the Lagrange multipliers as, see Appendix B for details of the calculation,

At Ll — I} 3(p—piE)
mc I 1ol + 21 1111y — ],2]12 — 13112 — Ig mc(Mo/[()) ’
o _ Ioly — L1 3(p—pi&) (118)
1_2]012 + 21_11110 — 1_2[12 — 131[2 — [3 mc(M()/[()) ’
N I — 1§ 3(p—piE)
A me= > 3 ,
[,2[()]2 + 2],1[110 — ],2[1 — ]_1[2 — [0 WIC(M()/I())
=3 — ) Iy Iy
M= 2 AL M(;q - 1 MIA >
(o = L)1z —1o) — (-1 = L1)* My me(ly — 3(I-y — 1))
(119)
3(I-y -1 I 1
meiM = (-1 —h) 2—0 Mg — 10 M,
(lo — L)1 —1o) = (I-1 — L1)* Mo me(ly — 3(I-1 — 1))
15 Io/M,
2 2,148y _ _ 1 0/ (4B) 120
mes 21,20+ b 1 (120)
Here p and p g stand for the pressure p:—%MlAA:%(Ml — m*c®?M_y) and the
equilibrium pressure pjp = —%m’fA = %(ml — m*c?

m_), respectively. The combination
p— pjg=(m*c?/3)(m_y —M_;) is called dynamical pressure.

Egs. (118)—(120) are valid only in first order in deviations from equilibrium.

4.7. Constitutive equations

Now, we are able to calculate the constitutive equations (102) for the moments M5,
MBC, M{*BC and M{BP. For reasons of simplicity we write the moments as sums of
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their traces and trace-free parts,
MAB — pAB) %AABMrDD 7

MrABC :MF(ABC> + %(AABM;«CDD + AACMrBDD + ABCM,,ADD) ,

M;‘IBCD — M(ABCD> (121)

r

+ %(MV(AB>GGACD +M,,<AC)GGABD +Mr<AD)GGABC
+MA<BC>GGAAD +M,,<BD>GGAAC +M},<CD>GGAAB)
+ %MfFGG(AABACD + AACABD + AADABC) ,

where the brackets denote symmetric trace-free tensors, see [13] for details. The traces
are related to the moments of lower rank by Eq. (52)

D 2.2
M, p=m"c"M,_, — M,

M*Pp=m**ME, — M,
(122)

My(AB)GG _ mzczMﬁ? _ Mr<AB) )

MfFGG = m4c4M,,4 — 2m262Mr,2 + M, .

Therefore, the required constitutive relations (102) follow from the knowledge of the
moments:

Miz’Mfz’thMiAlB>’M()(AB>’M0(ABC>’MI(ABC>,M1<ABCD) (123)

as function of the moments (100) or as functions of

M—laMOa MlaMOA) MIA) M]<AB> > (124)

where we have replaced M{8 by its trace-free part M*" and its trace MP) =
m2c*M_, — M.

Again, we consider only the first-order deviations from equilibrium and obtain from
the definition of projected moments (48) and the distribution functions (117)—(120)
the moments with index 7 as

I, .
M, = (me) Myl = 3(p = pie)(me)”!

o (ol — ID)L—y + (Ioy — I\ L)L + (I Iy — I))]+1
Ialoly + 21 1Ly — IoI? — 12,1, — I ’
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M (r—2 —1L)o — b) — (-1 — L)1 — It) A
(me)” 0

- (Io—DL)I-2—1)—U-1 —1)?

Ir - %(1r72 - Ir) B IO
Lh—3U_—15) L =3I —1)

(Ir—2 =)o — L) — (=1 — L)1 — 11)) Mt (125)

(Io—h)I—2—1))—U-1 — L) mc

s =20y + Ly am)
M(AB) _ r—14r—=3 r—1 r+ M(
’ (me) 1,20+ v o

MHABC) — ¢ |

r

MABCD)

I

Eq. (121) together with Eqgs. (122) and (125) give the desired constitutive equations for
the moments (102). If the constitutive equations are inserted into the moment equations
(94)—(98) one obtains a system of field equations for the moments (100). Again we
point out that either Mg or M{! is equal to zero by Eq. (99).

Since the system was closed by means of rational extended thermodynamics, the
resulting field equations form a set of symmetric hyperbolic equations. In this paper
we do not further investigate the properties of the system.

5. Local thermal equilibrium
5.1. Conservation laws

In this section we restrict the attention to the projected moments which are defined
in the Landau—Lifshitz frame, i.e. we set U4 = V4. The Landau—Lifshitz frame has the
advantage that the equilibrium phase density is isotropic with respect to the vector R4,

The five conservation laws for number density M;, momentum density M and
energy density M) read in this frame

1 1
DMy + VpMP — ~MPDVp + -MVp VP =0,
C C
1 1
Z(”BDM‘ — MEPYDV + VpMEP + = VEMPY cVp =0, (126)

1 1
DMy — ~M{PNVp + -M VPP =0,
C C

since M{! =0 in this case. Therefore, the momentum balance (126) may be considered
as an equation for the Landau-Lifshitz velocity ¥4 instead as an equation for the
momentum density.

Thus, we have five equations for the five unknowns M,, M, and V4. The set (126)
of equations is not closed unless we provide constitutive equations for M and M{5.



580 H. Struchtrup | Physica A 253 (1998) 555-593

If we follow the philosophy of extended thermodynamics these constitutive equations
have the form

Mgt =Mg (Mo, My),  M{"® =M{"®(Mo, M) .

Application of the entropy maximum principle leads the equilibrium phase density in
this case and we obtain the result that Mg! and M;'® are given by their equilibrium
values, see Eq. (63),

Mgt =0, M =m® = impa®® = —p A" (127)

Eq. (126) with Eq. (127) may be referred to as the relativistic Euler equations. They
read

DM, + %MOVD yP=o0,
(M; + pie)s DV VP p =0, (128)
DM, + (M, + p‘E)évDVD:O,
where we have used that
VC(ABC)+ACD VBV V=0 (129)

Since, by Eqgs. (65a), (65b) and (120), M, =mcMyl,/Iy holds, where the integrals
depend on the single variable z =mc?/kT, we may write the energy balance (128) as

_meMo d(lc;/lo) z

1
DT + pp-VpV”=0. (130)
T c

5.2. Maxwell iteration (Mg, M;'8)

The Euler equations are appropriate for processes where the local phase density
equals the local equilibrium phase density. The first deviations from this case are easily
obtained by a so-called Maxwell iteration [7]. The procedure works as follows: We
consider the moment equations (53) and insert the equilibrium values of the moments
(68) on the left-hand sides of these equations. Solving for the right hand sides gives
the first iterates. If one is interested in iterates of higher order one may insert the first
iterates in the left-hand sides and solve — again — for the moments on the right-hand
side.

Here, we are only interested in the first iterates for the moments Mgl and M.
Therefore, we need only consider the Egs. (96) and (98). Since, we are in the Landau—
Lifshitz frame we have w? =0 and obtain

1 1
Moy~ DVB+ vB OA——EMB, (131)



H. Struchtrup | Physica A 253 (1998) 555-593 581

1
MBD . —
P\E (15

1 1 1
mf g — p|E> <EVBVA + oV AABEVDVD>
1
= (M + pjpa’?), (132)

where we have used Eq. (129) and the identity

1
DA + —(V4DV? + V2DV ) =0. (133)
¢
The Euler equations help to eliminate the time derivatives and after some algebra the
following constitutive laws for M, M1<AB> and p=—1MP) are obtained:
51 M, 1
aVEMy — ﬂf——OVBTf fo , (134a)
1 1
2pe-VAVE = M (134b)
¢ cT
1
5P'E “Vp VDf—(p—p‘E). (134¢)

Here the coefficients o to d depend on z =mc?/kT by
1 Iy—1, I —1,

3 I, 4 -1,

2 2 ]1—[,1 z 1 1_ 2

=37 = 5 G o
B 57 a1, 3[((2 4) + )]
Iy (135)
T

L—15 3 Io
o= >

L1, =2

z —(1_1 -1+t

]_
Iy

where we have used Eq. (67).

Since by Eq. (85) M# is the relativistic equivalent to the heat flux, we may speak
of Eq. (134a) as the relativistic law of Fourier. The term with the gradient of M,
is a purely relativistic one and vanishes in the non-relativistic limit z — oo, because
of lim,_,,, «=0. On the other hand we have lim, ., f=1 and (134a) reduces to
the well-known Fourier law of non-relativistic theory, ¢; = frggkz/sz 0T /0x; in this
limit. Moreover, we find a = 1—12 and =0 in the ultra-relativistic limit z— 0.

Eq. (134b) gives the relativistic counterpart to the Navier—Stokes law. In the non-
relativistic limit we have lim, .o y=1 and obtain p{") = —t2p(dv'/0x;); the ultra-
relativistic case gives lim,_,oy= %

Eq. (134c) for the dynamic pressure p — p|r has no non-relativistic counterpart
because of lim,_,,, =0, so that p= p|e=nkT in the non-relativistic limit. In the



582 H. Struchtrup | Physica A 253 (1998) 555-593

0.08 [
0.06
a
/
0.04 f
0.02
)
/
ot : : . : ]
0 20 40 60 80 100

z

Fig. 1. The coefficients o and & as functions of inverse temperature z = mc?/kT.
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Fig. 2. The coefficients f and 7 as functions of inverse temperature z = mc?/kT.

ultra-relativistic case z— 0 we have lim,_,o 6 =0 and recover the well-known relation
P=DpE= %Ml between pressure and energy density.

In Figs. 1 and 2 we show the detailed dependence of the coefficients o to ¢ on the
dimensionless inverse temperature z; the integrals were solved numerically.
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5.3. Chapman—Enskog method

The relativistic BGK equation (32) may be rewritten as

ct
f:f\E*O—PAf,A (136)
P
and the basic assumption of the Chapman—Enskog method is that f on the right-hand
side may be replaced by f|g, such that

f:f\E_pCTTPA(f\E),A- (137)

|LL

This phase density may be used to calculate the constitutive functions for MB,M1<AB>

and p= —%M D . Here we will not perform the calculations in detail, but we will give
arguments why this method will give the same results that were obtained from the
Maxwell iteration.

We calculate the moment

MAI»“A,,:C, (pO )V+l—rlRA1 ...RAuf‘dP (138)
r | LL

from the Chapman—Enskog phase density (137). Insertion of Eq. (137) into Eq. (138)
yields

il ct
M:“ An:C/(p?LL) FIRA L RAN (fE_po_pA(fE)»A> dp,
1L (139)

M= (A czr/(P?LL)F"RA‘ R p(fig) 4 dP,

since T is a constant.

The moment equation for M4 follows from multiplication of the relativistic
Boltzmann equation (32) by ¢( p? L ) —"RA1 ... R4 dP and subsequent integration and
may therefore be written as

1
c/(p?LL)r*"RAI R pAf  dP = fE(M,AI"'Aff — M . (140)

We perform the Maxwell iteration by replacing of f by f| on the left-hand side of
Eq. (140). A little reorganization gives Eq. (139) — the same result as the Chapman—
Enskog method.

Note that both methods give the same result only in the case that T does not de-
pend on p“. The case of velocity-dependent relaxation times is discussed for the non-
relativistic case in [20]. In this paper it is shown that the moment method with a large
number of moments gives always the same results as the Chapman—Enskog method.
This is the reason why we consider the Chapman—Enskog method as a benchmark for
the moment method.
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5.4. Maxwell iteration (M;!, M'?)

5.4.1. Objective

In this subsection we calculate the laws of Fourier and Navier—Stokes with a Maxwell
iteration in the moment equations for the moments M;! and M;'8. Again we insert the
equilibrium moments on the left-hand sides and eliminate the time derivatives by means
of the Euler equations. The result reads

51 Moo 1 M3
B
M. -0
w2V Mo — ﬁ22 2 T ~crmie?’
(45)
yzzp‘ElwAVm:iMzi (141)
C CcT mc

with the temperature-dependent coefficients

L1y 11 —1_; 5L—2I

=3 3an -1, I,
8 2 5[ —1y 5h -2
2707 a1, 1,
z 2 2 10*12
Ly= I+ + 21 I_
[0( 1 o+ 14+ -+ To 1)}, (142)
L — I
1 fr—
) L—1,
5 212—10 —Iy =g+ I + 2L + (1o — b)/Io]
2:

L -1 Yoy = L) — 1o+ L/Iol-,

In order to obtain constitutive equations for the moments Mg and M{® we need re-
lations between these and the moments M5! and M;!® which appear on the right-hand
sides of Eq. (141). These relations must be of the form

(4B) D D
M MY p —
—oMf, =, 2RTTRD__ypp) (143)
mc 3mce

and we will use the phase densities (115) and (116) for the determination of the
dimensionless coeflicients ¢, and v and compare the results. With Eq. (143) we
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obtain from Eq. (141)

02 —p ﬁ25 1 M, B 1 B
BBy, — P22 2 P0G -~y
ov 222 T v et 07
) 1 1
B p = VAYE = —m ) (144)
U ¢ ct
0y PIE 1 1
———'—VDVD=—(p—p|E)-
v 3 ¢ ctT

and comparison with Eq. (134a)—(134c) shows that we have to compare the pairs

e (62) () (62)

5.4.2. Closure by entropy maximization

We start with the phase density (115) which was derived from the entropy max-
imum principle in this paper. The desired relations (143) were already calculated in
Section 4.7 and we may identify the coefficients in this case as

(lo— b)Y — (1 — L)L —b)

o == )
EMP = Iy =)y —To) — (I_y — 1)?
L -2+ y
,UEMP—L2 2o+ 1 5 ( 5)
(Lol — IDL + oly — 11 L)L + (1) — 1))
VEMP = .

I aloly +21 Iy — 1 _pI2 — 121, — I}

The comparison with the former result must be performed numerically and it yields
the interesting result

0 B2 V2 02 5

=0 = = =

\ , (146)
OEMP OEMP HEMP VEMP

i.e. use of the moment equations for M;! and M and the phase density (115) yields
the same results as the Chapman—Enskog method or the use of the moment equations
for Mg and M{18.
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In order to find an explanation for this we rewrite the Chapman—Enskog phase density
(137) with Eq. (27) as

A A B
f=fi (1 —(not) 4L— + cx(prs) A LE ) . (147)

|LL P

This function has the same dependence on p“ and p(l)LL as the phase density (115)
and we suppose that this is the reason for this coincidence.

5.4.3. Closure with Chernikov’s phase density
Chernikov’s phase density (116) yields a different set of coefficients for Eq. (143).
From the calculations of Appendix C, especially from Egs. (C.7)—(C.9) we find

(=B =y — D) — 1)

g - ’
P UL =) — L) —(Io—L)?
Io— 25 + Iy
hen = o+ (148)

_ (WL = )b + (il — L)l + (Il — IP)s
I L+ 2000 — 1203 — I3 — 1}

VCh

We have to compare these with the coefficients (145), and the best measures for the
comparison are the relative errors,

och %/ Vch

E,=1— N Eﬂzl— N E,=1-— .
OEMP HEMP VEMP

(149)

These functions are plotted in Fig. 3 as functions of inverse temperature. It is clearly
seen that the errors vanish in the non-relativistic limit z — oo, while they are biggest in
the ultra-relativistic limit z— 0. We have to conclude, that Chernikov’s phase density
is not suitable in the case under consideration.

5.5. Application of Marle’s BGK model

We consider the BGK model of Marle [4], see Eq. (35). We are interested in the
relativistic Navier—Stokes law only and consider the moment equations for M1<AB> and
M2<AB>. Again we perform the Maxwell iteration and obtain

1
12p e VAV = %Méf“g> : (150a)
1 (41/B) 1 By .

) (4B

r71> on the right-hand side
now. It follows that it is the moment equation for M2<AB> (150b) (with M1<AB> on the

note that the moment equation for M,<AB has the moment M
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Fig. 3. Relative errors E;, E, and E, as functions of inverse temperature z. £, goes down to —3 in the
limit z — 0.

right-hand side) which gives the same result as the Chapman—Enskog method. In order
to compare the two phase densities, we have to find a relation

(48)
M
Mé‘“”:x—;w (151)

for the use in Eq. (150a). From Egs. (125) and (C.9) follows:

I3 —-21_+1 _172—21() + 5

o= 152
15— 2l + 1 = o+ I (152)

XEMP =
and we have to compare }/ygyp and 7y/yc, with the Chapman—Enskog result y,.
A numerical analysis shows that

v

ACh N

V2

and it follows that Chernikov’s phase density is appropriate in Marle’s BGK model.
This is due to the fact that the application of the Chapman—Enskog method to Marle’s
BGK model would give a phase density which depends on p? and p?LL in the same
way as Chernikov’s phase density.

Fig. 4 shows the relative error

XEMP

E,=1-—
g XCh

and it is clearly seen that the phase density which was introduced in this paper is not
suitable here.
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Fig. 4. Relative error £, as function of inverse temperature z.

One may extend the results of this section to the conclusion that the proper choice
of moments and/or phase density depends on the interaction term of the relativistic
Boltzmann equation.

6. Conclusions

The formalism of projected moments presents itself as a powerful tool in relativistic
kinetic theory. Since the projected moments are the relativistic extension of the central
moments in non-relativistic theory (Section 3.4) this new formalism fills a gap between
relativistic and non-relativistic kinetic theory.

In particular, it allows an easy access to moment theories with more than 14 mo-
ments for the description of non-equilibrium processes via Extended Thermodynamics
(Section 4). Here one may distinguish between isotropic non-equilibrium, which will
be described only by scalar moments M,, but with a wide range of numbers r, and
non-isotropic non-equilibrium which will be described by tensorial moments A A1 4
with a wide range of values for n. The distinction between isotropic and non-isotropic
non-equilibrium was already very useful in the case of relativistic radiative transfer,
see [13]. This raises the question how many and which moments will be needed in
order to describe a given process properly — the answer will hopefully be given in a
future paper. But already the case of 14 moments needs further consideration since we
have presented an alternative set of moment equations for the 14-field case (93) which
competes with the old 14-field system (91).

A first answer to these questions was given in Section 5 of this paper where we
considered the local equilibrium case. It turned out that the proper choice of moment
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equations depends on the collision term under consideration. If one goes from the BGK
model to the relativistic Boltzmann collision term, the projected moment formalism will

also be useful in order to calculate the relativistic Navier—Stokes and Fourier laws, for
instance, with the combined method of Chapman—Enskog and Grad [20-22].

Appendix A. Motivation of relativistic BGK equation

The non-relativistic BGK equation reads [17]

of of 1
o e == fi),
where 7 is the mean collision-free time. We use Eq. (7) to write
o P 1
o + 0 e r(f fE)

or, after multiplication with p°/c

0
P fa==2(f = fie).

Since f is an invariant scalar, this equation is invariant with respect to Lorentz trans-
formations only if p°/ct is an invariant scalar. Thus, either t has to transform like
the time component of a 4-vector or p® has to be taken in a fixed frame. We choose
the second possibility and replace p° by p%, (Landau-Lifshitz frame) on the right-
hand side. Thus, follows Eq. (32). Note that the choice of the Landau-Lifshitz frame
guarantees the conservation of particle number, energy and momentum.

Appendix B. Calculation of Lagrange multipliers

In this appendix we give some details for the calculation of the Lagrange multipliers
in the 14 moment case.

We start with the calculation of the moments as functions of the Lagrange multipliers.
Insertion of Eq. (117) into (107) for n=0,1,2 yields in the first step

. Al
My=—=2""M,_y g — (2 = DM, p — & My g — A9ME g = ML

M ==27""M = (20 = DM — /IM,HlE

A(BC
ISMAB — M — e M (B.1)
_ (4B) 20 4By 31, (4B)
MPP = 3 M = G0 = DM — M

(4B)C (4B)C (4B)(CD)
7)‘CM\E Mr+1|E /I(CD)M;H |E
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We introduce the equilibrium moments of the Landau—Lifshitz frame by Eq. (68) and
neglect all terms of second order in the A’s and w* to obtain

M= 3"y = (20 = Dmy — 3 mpes (B.2a)
MA = (m — KmDD) lwA —/IOAlmDD—/llAlmD D (B.2b)
r r 3 c 3 3 r+10 » .

2,
MU = —EA1<AB>mfleG. (B.2¢c)

From these equation we shall now calculate the Lagrange multipliers as function of the

Al
moments. We start with the determination of the scalar Lagrange multipliers A~!, A%, 4 .
These follow from Eq. (B.2a) with r=0,1

Al
My= _Ailmfl — (/10 — Dmg — 2 my,
—1 0 2l
M1 =—1 my —(l — 1)m1 —A my
and the equation for the pressure p=—1M{';=1(M; — m*c*M_;)

3

—3p:M1AA =m?cA (=2 ""m_y — A = Dm_| — ilmo)

N
—|—/171Wl0 +()0 — Dymy 4+ 4 my.

With Egs. (71), (65a) and (65b) we may simplify these equations to

ro-! o9 r T
Ifl I() 11 W O
0 _
Iy I I Z - 0 ’
Al 3(p—piE)
1, 1 Iy | A mc | _m]ZTop/lli_

where pjy=1(m; — m*c*m_y) is the equilibrium pressure. The combination p —

D|E =m?c?/3(m_, —M_,) is the dynamical pressure. Inversion of the inhomogeneous
system gives the scalar Lagrange multipliers as given in Eq. (118).

Eq. (B.2b) with =0, 1 serves to determine A% and A'“. After elimination of w
by means of Eq. (71) and with the use of Egs. (65a) and (65b) these equations read

Iy 4 Iy y 104 14
3— | M5 — M =—A ([,2 —[0)—1’}’10}, (1,1 —[1),
( © me(h — Y1 — 1) ‘)

0= —iOA(I_l - 11) - mc/llA(lo —12) .

Inversion gives Eq. (119).
Eq. (120) follows immediately from Eq. (B.2¢c) with »=1.
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Appendix C. Chernikov’s phase density

We consider Chernikov’s phase density (116)
S= 116 = 8ap" = Bugp” p°)

and rewrite it as

f=rfe(l— o oclp?LR - OCZ(P?LR)z —afR* — aLp?LRRA - O(<AB>R<ARB>) .

(C.1)
Here, the coeflicients must be determined from the constraints
M, :c/p?LRf ae, M :c/RAf dP,
M, :c/(p?LR)zfdP, Mfzozc/p?LRRAfdP, (C.2)

M{‘B:C/RARdeP,

where we have set M;! =0 which means that we are interested in the Landau-Lifshitz
frame only.
From Eq. (C.1) we obtain the projected moments (48) for n=0,1,2 as

M, = (1 - O(O)m,. - o(ll’nr+l - oczmr+2 > (C3a)
MrA = _%aOA((mC)Zmr71 —Mpy1) — %(xlA((mc)Zmr —Mmpi2), (C.3b)
MAB) = _ 25 08) yF, (C3¢)

From these equations we shall now calculate the coefficients as functions of the mo-
ments. We start with the determination of the scalar Lagrange multipliers o, o, o2,
These follow from Eq. (C.3a)

Mo=(1 — "My — o' My — o*m;
My =1 — oM, — o'my — o’m;
and the equation for the pressure
3(p—pip) =—M'y+mi'y=(mc)y’(m_y —M_y)
= (me) (" m_y + o' My + 0> M) .

With Eq. (74) we may simplify these equations to

[0 [1 12 OCO [ 0

1 b L 'me | = 0
3(p=pi£)

]—1 ]0 ]1 az(mC)Z L mc,zM:/‘Ii) h
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and obtain by inversion the coefficients o0 ol o2

o LI — I} 3(p—pi&)
1L+ 200L L, — 1413 — IR — I me(Mo/I) ’
. Ll — L, 3(p—piE)
ame= 212 3 ’
1_ L5+ 2L 1, 71_1[2 71013 711 mc(Mo/Io)
Il — I} 3(p—piE)
1,111[3 +2[011[2 —171]22 —1513 —113 mc(M()/Io) '

(C.4)

a*(me)? =

Eq. (C.3b) with »=0,1 serves to determine «® and o'/,

M = =3 (me)*m_y — My) = §oM(me)’ My — my)

0=—10"((mc)*My — mp) — 1" ((mc)* My — m3).

After use of Eq. (74) and some algebra we obtain
04 _ Il _13 M64
(Io — 1)? — (I — I))(Ih — 1) me(Mo/1o)
1 _ L — I M
(lo — )? = (I-y — h)(L — I) imc(Mo/Io)

o

(C.5)
mco

(4B)

Eq. (C.3c) with r =1 gives immediately the coefficient o as

4B
Lan _ 1 1 M .
2 Iy =25 + L5 (mc)*(My/1o)
With (C.4)—(C.6) we know all coefficients in the phase density (C.1) and are able to

calculate constitutive equations for arbitrary moments of this phase density. From easy
calculations we obtain

(C.6)

M, —m,= _3(p - p|E)(mc)ril

y (LWL — I+ (L — IoB) 4y + (Ioh, — IP)42

) c7
IL+ 200G — 1417 — R — 1} (€7
M/ _ U = L) = B) = Uy = 1r2) o _IZ)MA (C8)
(mc)” (L —L)J-y — L) —Uo—DL)? 0 '
I,y —2I +1,
M“B) = (mey ! 2—+”M,<AB> . (C.9)

I, —2L +1
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