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Maximum of the Local Entropy Production Becomes Minimal in Stationary Processes
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(Received 19 December 1997)

In this paper we propose a new principle for stationary thermodynamic processes: The maximum of
the local entropy production becomes minimal in stationary processes. In order to show the usefulness
of the principle, we consider one-dimensional stationary heat transfer in monatomic gases. Here we
solve extended moment schemes that follow from the Boltzmann equation. Such schemes require
boundary conditions for all moments under consideration, and these are constructed by means of the new
principle. Moreover, we show that the minimum principle for theglobal entropy production does not
lead to good results in this case. [S0031-9007(98)06306-6]
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It is well known that the laws of Navier-Stokes an
Fourier are not able to properly describe processes
gases with large Knudsen numbers. One successful
tempt to describe these rarefied gases is Grad’s mom
method which has inspired the development of the gro
ing field of extended thermodynamics [1–9]. Despi
their great differences in the formal structure, all theori
of extended thermodynamics have one common featu
In contrast to classical thermodynamics of irreversib
processes [10], the state space is not spanned by the fi
of density% , velocity yi , and temperatureT alone. In-
deed, in the theory of moments and in extended therm
dynamics the state space is enlarged by nonequilibriu
quantities, e.g., the pressure deviatorpkijl, the heat flux
qi , and other quantities, the so-called moments, which
not have an intuitive physical interpretation.

Moment methods and extended thermodynamics der
first order partial differential equations in space-time fo
the variables that span the state space. Thus, one
need a set of initial and boundary conditions in ord
to formulate and solve a proper initial boundary valu
problem. Until now there has been no answer to t
question of how initial and boundary conditions for th
higher moments—those without intuitive interpretation—
may be formulated. Initial data does not cause a b
problem, since one may often consider processes wh
start from equilibrium. But boundary conditions fo
higher moments present a problem. For this reas
extended thermodynamics has so far dealt with initi
value problems. The only exception is the calculation
shock waves, where thermodynamic equilibrium preva
far before and behind the shock, and therefore the valu
of the moments are known at this point [7].

Let us consider the one-dimensional stationary he
transfer problem between rigid walls at rest (see Fig. 1
If the mass or, alternatively, the pressure is fixed, we c
successfully control only four parameters: the temper
turesT0 andTL at the walls and the velocitiesy0  yL 
0 of the walls. By the physics of the problem it is im
possible to control other quantities. The heat flux mu
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be adjusted so as to keep the temperatures constant. Th
the heat flux is not an independent quantity in the station
ary heat transfer experiment.

Mathematics, however, requires additional boundar
conditions for the equations of extended thermodynamics
Since we have control of four quantities only, we must
conclude that the other moments will adjust themselves
In other words, there must be a physical principle tha
identifies the boundary values of the moments.

We propose that the boundary conditions of moment
have to be chosen so as to make the maximum ove
all positions of the local entropy production rateSsxd
minimal,

max
x[f0,Lg

Ssxd °! min . (1)

In order to explain this statement, we recall that forSsxd 
0 the gas is in equilibrium at every pointx. Since we
prescribe different temperaturesT0, TL, the gas will be in
nonequilibrium in the heat transfer experiment, and we
may calculate the local entropy production rateSsxd. The
value ofSsxd is a measure for the local tendency towards
equilibrium which grows withSsxd. The significance of
our statement (1) is that the gas “wants” to be as close t
equilibrium as possible inevery point. This is guaranteed
in an overall manner by our minimax principle.

The local statement (1) is essentially different from the
principle of minimumglobal entropy production,Z

V
SsxddV °! min , (2)

whereV denotes the volume of the body. This principle

FIG. 1. The stationary heat transfer experiment between rigi
walls.
© 1998 The American Physical Society
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was introduced by Prigogine in the context of linea
irreversible thermodynamics [11,12].

The application of the principle of global minimum
entropy production for the determination of additiona
boundary conditions leads to solutions where the gas
in equilibrium—with constant temperatureTL —at most
points of the intervalf0, Lg and is not in equilibrium—
with steep temperature gradient—only in a small interv
f0, ag, a ø L (see the discussion of Figs. 2 and 3 below
This behavior where nonequilibrium would prevail only
on the small intervala with a big value of the local
entropy production rate is not observed in experimen
and is forbidden by our new principle (1).

We emphasize that the new principle—in contrast
the principle of global minimum entropy production—is
not restricted to linear theories of thermodynamics. Mor
over, we use the principle in order to obtain informa
tion about the boundary conditions of the higher momen
only. We do not use the principle to determine constitu
tive equations for the higher moments; this is already do
by the constitutive theory of extended thermodynamics
by the moment method before the principle comes in
play. Thus the field equations are already known befo
the principle is applied; the principle merely helps us t
solvethe field equations.

The new principle may be used in all stationary the
modynamic processes of arbitrary dimension. This a
the extension to instationary processes will be discuss
in future work.

It is well known that problems with large Knudsen
numbers require many moments for a successful tre
ment [2,6]. Here we shall consider nonlinear extende
thermodynamics of 14 fields. This requires onlyoneaddi-
tional boundary condition in the heat transfer experimen
A forthcoming paper will deal with extended thermody
namics of many moments which requiremore boundary
conditions.

Extended thermodynamics can be based on the kine
theory of monatomic ideal gases. The set of variabl
is defined by moments of the distribution function. Th
equations of transfer for those moments are derived fro
the Boltzmann equation and the closure problem is solv
by maximizing the entropy [2,5,13].

The first 13 variables have an easy physical interpr
tation. They are the density% , velocity yi , temperature
T , pressure deviatorpkijl, and heat fluxqi . The angular
brackets denote the symmetric traceless part. Here,
linearized equations that follow from the entropy max
mizations are equivalent to Grad’s 13-moment theo
[1,2]. If we add to the first 13 variables the nonequilib
rium partD of the full trace of the fourth moment, we ge
a system with 14 moments. We consider a steady st
problem in which all variables depend only on one spa
dimensionx. With s  pk11l and q  q1, we have 6
field equations, viz.,

d
dx

h%yj  0 , (3)
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dx

h%y2 1 %RT 1 sj  0 , (4)

d
dx

h%y3 1 5%RTy 1 2sy 1 2qj  0 , (5)

d
dx

Ω
2
3

%y3 1

µ
4
3

%RT 1
7
3

s

∂
y 1

8
15

q

æ
 2a%s , (6)

d
dx

Ω
1
2

%y4 1

µ
4%RT 1

5
2

s

∂
y2 1

µ
16
5

q

∂
y

1
5
2

%R2T2 1
7
2

RTs 1
1
6

D

æ
 2a%

µ
sy 1

2
3

q

∂
, (7)

d
dx

Ω
%y5 1 s14%RT 1 8sdy3 1

µ
84
5

q

∂
y2

1

µ
35%R2T 2 1 28RTs 1

7
3

D

∂
y 1 28RTq

æ
 2a%

µ
4sy2 1

16
3

qy 1
2
3

D

∂
. (8)

R denotes the gas constant anda is a constant that follows
by calculation of the collision production for Maxwell
molecules. The first three equations are the equation
of balance for the conserved quantities mass, momentum
and energy.

We consider the heat transfer problem between two
rigid walls at x  0 and x  L with the boundary
conditions

T s0d  T0, TsLd  TL ,

ys0d  0, ysLd  0 . (9)

Note that the system (3)–(8) requires six boundary
conditions. Thus, we need two more boundary condition
in addition to the list (9). One may choose any two
quantities for the additional boundary conditions. In the
following we shall prescribe the pressurep at x  0 and
the heat fluxq—a choice which tuns out to be most
convenient.

From the boundary conditions (9)3,4 and the mass
balance (3) it follows that the velocity is zero,y  0.
Therefore the energy balance (5) requires a constant he
flux, q  const. The balance of the pressure tensor (6
reduces tos  0 and we conclude from the balance of
momentum (4) that the pressurep  %RT is a constant,
p  const. In order to simplify the equations further, we
introduce dimensionless quantities by

x̂ 
x
L

, T̂ 
T
T0

, D̂ 
D

pRT0
,

%̂ 
%RT0

p


1

T̂
, q̂ 

q
p

p
RT0

, B 

p
RT0

3

aLp
.
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B is the Knudsen number for the heat transfer problem
There remains the following simple system of ordinar
nonlinear differential equations:

5
2

dT̂
dx̂

1
1
6

dD̂

dx̂
 2

2
3B

q̂

T̂
,

dT̂
dx̂

 2
1

42B
D̂

q̂T̂

(10)

with the boundary conditions

T̂s0d  1, T̂sLd  T̂L . (11)

Note that the heat flux̂q  const enters these equation
as a parameter while the constant pressurep determines
the Knudsen number. The determination ofq̂ requires an
additional boundary condition. The maximization proce
dure [2,6,13] yields an explicit phase density for nonequ
librium from which we have calculated the dimensionles
entropy production as (withs  0)

Ŝ 
4

15B
q̂2

T̂3
1

1
180B

D̂2

T̂ 4
. (12)

Thus the phase density is quadratic in the nonequilibriu
quantitiesq̂ andD̂. It is only for small Knudsen numbers,
B ø 1, that the equations (10) reduce to Fourier’s law fo
Maxwellian molecules, viz.,

q̂F  2
15
4

BT̂
dT̂
dx̂

. (13)

Because of their nonlinearity, the equations (10) mu
be solved numerically. We choose

T̂sLd  T̂L  1.1

and consider the case of a dense gas with Knuds
number B  0.05 and the case of a rarefied gas with
B  1.

The application of the minimax principle for the loca
entropy production proceeds as follows: The numer
cal solution of (10) with a given value of̂q provides
T̂  T̂sx̂, q̂d, D̂  D̂sx̂, q̂d and, by (12), the local entropy
productionŜ  Ŝsx̂, q̂d. The maximum of this function is
a function ofq̂ alone, viz.,Ŝmaxsq̂d  maxx[f0,1g Ŝsx̂, q̂d.
The minimum ofŜmaxsq̂d determines the heat flux̂qmin as
the abscissa of the minimum ofŜmaxsq̂d.

We considerq̂min to be the correct choice for the hea
flux in the description of the heat transfer problem b
means of the 14-moment system.

Thus, in order to find the correct minimum̂qmin, one
must solve the differential equations (10) for variou
values ofq̂. This will make the method quite cumbersom
in theories with many moments and even more so
two- or three-dimensional problems, where the bounda
conditions are functions rather than numbers as in t
one-dimensional case. Here, with only one addition
boundary condition forq̂, the method requires little
numerical efforts.

We start with the discussion of the case with Knudse
numberB  0.05. The bold line in Fig. 2 showŝSmaxsq̂d
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FIG. 2. The local maximum entropy production rateŜmaxsq̂d
(bold line) and the global entropy production rate

R
Ŝsx̂, q̂ddx

(thin line) as a function of heat flux̂q for B  0.05.

as a function of̂q with only one minimum. The numerical
calculation yieldŝqmin  20.0195 93 and this is—due to
the small value ofB—very close to the solution of (13)
which is easily determined aŝqF  20.0196 88. The
corresponding temperature function̂T sx̂, q̂mind is shown
in Fig. 3 by the bold line. The temperature is almost
straight line due to the small temperature difference.

It is instructive to study the space function of the
temperature for other values ofq̂. The thin lines in Fig. 3
represent the temperature function forq̂  20.03, q̂ 
20.01, andq̂  20.002. If the equations (10) are solved
with q̂  20.03, the temperature becomes nonmonoton
Starting atx̂  0 with T̂  1 the temperature decreases
first, reaches a minimum, and then increases toT̂  1.1 at
the right boundary. This behavior will never be observed
and, of course, it contradicts our new principle.

The case wherêq  20.01 is also interesting. The
temperature increases very fast toT̂ . 1.05 and increases
linearly to T̂  1.1, the prescribed temperature atx 
L. This corresponds to a very small overall entrop
production rate

R
Ŝsx̂, q̂ddx. Indeed, the thin line in Fig. 2

shows
R

Ŝsx̂, q̂ddx as a function ofq̂ and the overall
entropy production becomes smaller, ifq̂ tends to zero.

FIG. 3. T̂ sx̂, q̂d for q̂min  20.0195 93 (bold line) and
for q̂  20.002, q̂  20.01, and q̂  20.03 (thin lines);
B  0.05.
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FIG. 4. D̂sx̂, q̂d for q̂min  20.0195 93, q̂  20.01, andq̂ 
20.03 sB  0.05d.

Because of numerical instability we could not solve th
equations (10) forjq̂j , 0.002, but one may extrapolate
the thin curve of Fig. 2 to see that the global entrop
production becomes minimal atq̂  0. Because of the
global principle (2), we should choose this value ofq̂.
Since the temperature is already almost constant forq̂ 
20.002, we expect to havêT sx̂d  1.1  const with a
jump atx̂  0 in the limit q̂ ! 0. This is unphysical and
we conclude that the application of the criterion (2) is no
suitable in this context.

Figure 4 shows those curves ofD̂sx̂d which correspond
to the temperature curves of Fig. 3.

In all cases,D̂ has a peak at̂x  0 and is constant in
almost all space points. This constant value ofD̂ decreases
if q̂ goes to 0. In the casêq  0—corresponding to
minimum global entropy production—we expect thatD̂

has a large peak value atx̂  0, where the temperature
gradient is steep and is zero elsewhere. Since we ha
D̂  0 in local equilibrium, there is nonequilibrium only
in the vicinity of x̂  0 and equilibrium—withq̂  0,
D̂  0, and Ŝ  0—at all other positions. One might
say that the point̂x  0 bears all nonequilibrium of the
process. On the other hand, we have a nonvanishingD̂ for
q̂min  20.0195 93—here we haveŜ fi 0 in all points,
and one might say that all points share the nonequilibrium

In the case withB  0.05 the new minimax principle
gives a value for̂q very close to the Fourier law. Now,
however, we consider a large Knudsen number ofB 
1. In this case, we expect different results from th
Fourier law (13)—which givesq̂F  20.393 75—and
the nonlinear 14-field case. We have performed the sam
procedure as above and foundq̂min  20.057 67, which
is 6.8 timessmaller thanq̂F . Figure 5 showŝTsx̂, q̂d for
several values of̂q; the curve forq̂min is drawn as a bold
line. Although the temperature difference is small th
temperature is not straight in this case. We do not wa
to overemphasize this result, since 14 moments will n
suffice for a proper description of a rarefied gas. Indee
in rarefied gases we expect coincidence with experimen
e
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FIG. 5. T̂ sx̂, q̂d for q̂min (bold line) and for various values of
q̂ (thin lines);B  1.

data only in moment theories with a large number o
moments (see [2,6]). A detailed examination of the
moment method in stationary heat transfer of rarefie
gases is planned for the future.

We have proposed a principle for the selection o
boundary values in extended thermodynamics: The max
mum of the local entropy production rate becomes mini
mal in stationary processes. We have exhibited th
usefulness of the principle for extended thermodynamic
of 14 moments. A paper on stationary heat transfe
in extended thermodynamics with more moments is in
preparation. We are confident that there are interestin
applications for the principle in other fields and look
forward to learning about these.

For valuable discussions, we are indebted to Profess
Ingo Müller (Berlin) and Daniel Reitebuch (Berlin).
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