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Maximum of the Local Entropy Production Becomes Minimal in Stationary Processes
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In this paper we propose a new principle for stationary thermodynamic processes: The maximum of
the local entropy production becomes minimal in stationary processes. In order to show the usefulness
of the principle, we consider one-dimensional stationary heat transfer in monatomic gases. Here we
solve extended moment schemes that follow from the Boltzmann equation. Such schemes require
boundary conditions for all moments under consideration, and these are constructed by means of the new
principle. Moreover, we show that the minimum principle for tflebal entropy production does not
lead to good results in this case. [S0031-9007(98)06306-6]

PACS numbers: 05.70.Ln, 47.45.—n, 51.10.+y

It is well known that the laws of Navier-Stokes and be adjusted so as to keep the temperatures constant. Thus
Fourier are not able to properly describe processes ithe heat flux is not an independent quantity in the station-
gases with large Knudsen numbers. One successful atry heat transfer experiment.
tempt to describe these rarefied gases is Grad’s momentMathematics, however, requires additional boundary
method which has inspired the development of the groweonditions for the equations of extended thermodynamics.
ing field of extended thermodynamics [1-9]. DespiteSince we have control of four quantities only, we must
their great differences in the formal structure, all theoriexonclude that the other moments will adjust themselves.
of extended thermodynamics have one common featurén other words, there must be a physical principle that
In contrast to classical thermodynamics of irreversibleidentifies the boundary values of the moments.
processes [10], the state space is not spanned by the fieldsWe propose that the boundary conditions of moments
of densityo, velocity v;, and temperatur& alone. In- have to be chosen so as to make the maximum over
deed, in the theory of moments and in extended thermaall positions of the local entropy production rabx)
dynamics the state space is enlarged by nonequilibriurminimal,

quantities, e.g., the pressure deviatgy;), the heat flux max — . min 1
gi, and other quantities, the so-called moments, which do xE[O,L]E(X) ’ (1)
not have an intuitive physical interpretation. In order to explain this statement, we recall that¥¢x) =

Moment methods and extended thermodynamics derivg ine gas is in equilibrium at every point Since we
first order partial differential equations in space-time forprescribe different temperatur@s, 7;, the gas will be in

the variables that span the state space. Thus, one Wisnequilibrium in the heat transfer experiment, and we
need a set of initial and boundaw_ gondmons in ordermay calculate the local entropy production rate). The

to formulate and solve a proper initial boundary value,giye of 3 (x) is a measure for the local tendency towards
problem. Until now there has been no answer t0 theqyilibrium which grows withS(x). The significance of
question of how initial and boundary conditions for the 5, statement (1) is that the gas “wants” to be as close to
higher moments—those without intuitive interpretation—equ”ibrium as possible ievery point This is guaranteed
may be formulated. Initial data does not cause a bign an overall manner by our minimax principle.

problem, since one may often consider processes which Thg |ocal statement (1) is essentially different from the

start from equilibrium. But boundary conditipns for principle of minimumglobal entropy production,
higher moments present a problem. For this reason

extended thermodynamics has so far dealt with initial f 3(x)dV — min, )
value problems. The only exception is the calculation of 14

shock waves, where thermodynamic equilibrium prevailsvhereV denotes the volume of the body. This principle
far before and behind the shock, and therefore the values

of the moments are known at this point [7].

Let us consider the one-dimensional stationary heat T(x=0)=T, ~ T(x=L)=T,
transfer problem between rigid walls at rest (see Fig. 1).
If the mass or, alternatively, the pressure is fixed, we can ~ V(x=0)=0 - V(=L)=0
successfully control only four parameters: the tempera- ; i X

turesTy andT}, at the walls and the velocitias) = v; = 0 L

0 of the walls. By the physics of the problem it is im- FIG. 1. The stationary heat transfer experiment between rigid
possible to control other quantities. The heat flux mustvalls.
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was introduced by Prigogine in the context of linear i{evz + ORT + o} =0 (4)
irreversible thermodynamics [11,12]. dx ’

The application of the principle of global minimum
entropy production for the determination of additional i{Qv3 + SoRTv + 200 + 2} = 0 (5)
boundary conditions leads to solutions where the gas is dx ’
in equilibrium—with constant temperatuf§ —at most

points of the interval0, L] and is not in equilibrium— d {E ovd + <i ORT + 7 (T)v + ﬁq}
with steep temperature gradient—only in a small interval dx | 3 3 3 15
[0,a], a < L (see the discussion of Figs. 2 and 3 below). — —aoo (6)

This behavior where nonequilibrium would prevail only

on the small intervala with a big value of the local d (1 5 s 16
entropy production rate is not observed in experiments - {3 ev' + <4QRT + ) (T>U + <? 61>U
and is forbidden by our new principle (1).

We emphasize that the new principle—in contrast to + Bl oR2T? + lRTO' T 1 A}
the principle of global minimum entropy production—is 2 6
not restricted to linear theories of thermodynamics. More- 2
over, we use the principle in order to obtain informa- = —a9<f7v + §CI>, (7)
tion about the boundary conditions of the higher moments
only. We do not use the principle to determine constitu- g4 s 3 8 s
tive equations for the higher moments; this is already done ; - {QU + (140RT + 8o)v” + <? 61>U
by the constitutive theory of extended thermodynamics or
by the moment method before the principle comes into + <359R2T2 + 28RT o + 7 A)v + 28RTq}
play. Thus the field equations are already known before 3
the principle is applied; the principle merely helps us to 16 o)
solvethe field equations. = —aQ<40v2 T3t A)- (8)

The new principle may be used in all stationary ther- .
P P y 4 denotes the gas constant amds a constant that follows

modynamic processes of arbitrary dimension. This amﬁy lculati ¢ th llisi Juction for M |
the extension to instationary processes will be discusse caiculation of the collision production for Maxwe

in future work molecules. The first three equations are the equations
It is well kﬁown that problems with large Knudsen of balance for the conserved quantities mass, momentum,

numbers require many moments for a successful treat’a}n\c’ivenergy._d the heat t ¢ bl bet N
ment [2,6]. Here we shall consider nonlinear extended. 'de coIInS| fr —eO ead ran_sir p_rt(% f[ehm be weden wo
thermodynamics of 14 fields. This requires onhyeaddi- 19'¢ walls at x =0 and x = L Wl € boundary

tional boundary condition in the heat transfer experiment?onditions

A forthcoming paper will deal with extended thermody- T(0) = Ty, T(L) =T, ,

namics of many moments which requingore boundar

conditions. g | 4 v(0) =0, v(L) = 0. (9)

Extended thermodynamics can be based on the kinetiote that the system (3)—(8) requires six boundary
theory of monatomic ideal gases. The set of variablegonditions. Thus, we need two more boundary conditions
is defined by moments of the distribution function. Thein addition to the list (9). One may choose any two
equations of transfer for those moments are derived fronquantities for the additional boundary conditions. In the
the Boltzmann equation and the closure problem is solve¢bllowing we shall prescribe the pressyseatx = 0 and
by maximizing the entropy [2,5,13]. the heat flux¢—a choice which tuns out to be most

The first 13 variables have an easy physical interpreeonvenient.
tation. They are the density, velocity v;, temperature From the boundary conditions (§) and the mass
T, pressure deviatop;;,, and heat fluxg;. The angular balance (3) it follows that the velocity is zero, = 0.
brackets denote the symmetric traceless part. Here, thEherefore the energy balance (5) requires a constant heat
linearized equations that follow from the entropy maxi-flux, ¢ = const. The balance of the pressure tensor (6)
mizations are equivalent to Grad’'s 13-moment theoryeduces toor = 0 and we conclude from the balance of
[1,2]. If we add to the first 13 variables the nonequilib- momentum (4) that the pressupe= @ RT is a constant,
rium partA of the full trace of the fourth moment, we get p = const. In order to simplify the equations further, we
a system with 14 moments. We consider a steady staiatroduce dimensionless quantities by
problem in which all variables depend only on one space

dimensionx. With o = p;, and ¢ = ¢q;, we have 6 =2 T = 1, A= A

field equations, viz., L To PRTy L
d ~ _ @RT) 1 . q JRTy®
< lovy = = - =, = ., B=YT"U
—fevi=o0. @ 6-="-F 4= = L
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B is the Knudsen number for the heat transfer problem. 0.4
There remains the following simple system of ordinary
nonlinear differential equations: 0.3
5df  14d 2 g df 1 A
2 dx 6 di 3BT’ ds 2B §T 0.2
(10)
0.1
with the boundary conditions
7 = 7 = 7 0
) =1, T(L) =Ty (11) -0.03 0.02 -0.01 0
Note that the heat flu§ = const enters these equations q

as a parameter while the constant presgumdetermines g 2. The local maximum entropy production r&8han(3)

the Knudsen number. The determinationjafequires an  (ho|d line) and the global entropy production rafé(z, §)dx
additional boundary condition. The maximization proce-(thin line) as a function of heat flux for B = 0.05.

dure [2,6,13] yields an explicit phase density for nonequi-
librium from which we have calculated the dimensionless
entropy production as (withr = 0)
> Ao as a function of; with only one minimum. The numerical
_ 49 1 A (12) calculation yieldsjmn = —0.019593 and this is—due to
158 73 180B T* the small value ofB—very close to the solution of (13)
Thus the phase density is quadratic in the nonequilibriunwhich is easily determined agr = —0.019688. The
quantitiesy andA. It is only for small Knudsen numbers, corresponding temperature functidi(x, gmin) is shown
B < 1, that the equations (10) reduce to Fourier’s law forin Fig. 3 by the bold line. The temperature is almost a
Maxwellian molecules, viz., straight line due to the small temperature difference.
It is instructive to study the space function of the

gr = _15 BT dY: (13) temperature for other values §f The thin lines in Fig. 3
4 dx represent the temperature function fpr= —0.03, § =
Because of their nonlinearity, the equations (10) must-0.01, andg = —0.002. If the equations (10) are solved
be solved numerically. We choose with § = —0.03, the temperature becomes nonmonotone.

(L) =1, = 1.1 S_tarting att =0 yv[th T =1 the temperature decreases
’ first, reaches a minimum, and then increases te 1.1 at

and consider the case of a dense gas with Knudsethe right boundary. This behavior will never be observed,

number B = 0.05 and the case of a rarefied gas with and, of course, it contradicts our new principle.

B=1. The case wheré] = —0.01 is also interesting The

The application of the minimax principle for the local temperature increases very fastite= 1.05 and increases
entropy production proceeds as follows: The numeridinearly to 7 = 1.1, the prescribed temperature at=
cal solution of (10) with a given value of provides L. This corresponds to a very small overall entropy
T =T(&, q), A = A(%, ) and, by (12), the local entropy production ratefE q)dx. Indeed, the thin line in Fig. 2
production>, = 3(%,§). The maximum of this functionis shows [ (%, §)dx as a function of§ and the overall
a function ofg alone, viz.,Sma(§) = maX,e[o.1] S(%,4). entropy production becomes smallergitends to zero.

The minimum ofimax(fl) determines the heat flug,i, as
the abscissa of the minimum &fya(3).

We considergmi, to be the correct choice for the heat
flux in the description of the heat transfer problem by
means of the 14-moment system.

Thus, in order to find the correct minimug,,, one 1.05
must solve the differential equations (10) for various
values ofg. This will make the method quite cumbersome
in theories with many moments and even more so in 1.0
two- or three-dimensional problems, where the boundary

1.1

~>

g =-0.01959..

o s X B=0.

conditions are functions rather than numbers as in the 0.95 o0
one—dlmensmnalllcase. AHere, with only one add!tlonal % 0.2 04 . 06 08 1
boundary condition forg, the method requires little %

numerical efforts. FIG.3. T(%,9) for gmin = —0.019593 (bold line) and

We start with the discussion of the case with Knudserjor 5 = —o. 002, G = —001, and § = —0.03 (thin lines);
numberB = 0.05. The bold line in Fig. 2 Show&max(@) B = 0.05.
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A
-0.75 0045552 004 006 008 04 X
0 0.2 0.4 0.6 0.8 1 FIG. 5. T(;%,Q) for gmin (bold line) and for various values of
* g (thin lines); B = 1.
FIG. 4. A(%,§) for gmin = —0.019593, § = —0.01, andg =
—0.03 (B = 0.05).

data only in moment theories with a large number of
moments (see [2,6]). A detailed examination of the
Because of numerical instability we could not solve themoment method in stationary heat transfer of rarefied
equations (10) fOIif]l < 0.002, but one may extrapolate gases is planned for the future.
the thin curve of Fig. 2 to see that the global entropy \We have proposed a principle for the selection of
production becomes minimal gt = 0. Because of the poundary values in extended thermodynamics: The maxi-
global principle (2), we should choose this value f  mum of the local entropy production rate becomes mini-
Since the temperature is already almost constangfer  mal in stationary processes. We have exhibited the
—0.002, we expect to havel'(t) = 1.1 = const with a  ysefulness of the principle for extended thermodynamics
jump att = 0in the limitg — 0. This is unphysical and of 14 moments. A paper on stationary heat transfer
we conclude that the application of the criterion (2) is notjn extended thermodynamics with more moments is in

suitable in this context. . _ preparation. We are confident that there are interesting
Figure 4 shows those curves af%) which correspond  applications for the principle in other fields and look
to the temperature curves of Fig. 3. forward to learning about these.

In all cases A has a peak at = 0 and is constant in For valuable discussions, we are indebted to Professor

almost all space points. This constant valudafecreases Ingo Miiller (Berlin) and Daniel Reitebuch (Berlin).
if § goes to 0. In the casg = 0—corresponding to

minimum global entropy production—we expect thit
has a large peak value at= 0, where the temperature
gradient is steep and is zero elsewhere. Since we have *Email address: hest0931@thermodynamik.tu-berlin.de
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