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In a recent paper (Struchtrup, Annals of Physics, 257, 1997) we set up an extended moment
method for radiative transfer problems, which involves matrices of mean absorption and
scattering coefficients. In the present paper, we examine the resulting moment equations for
one-dimensional radiative transfer problems. In particular we are interested in the number of
moments which one has to choose in order to have satisfactory agreement between solutions
of the moment equations and solutions of the radiative transfer equation. We show that the
moment theory will describe a one-dimensional beam properly, if moments with a tensorial
rank of about 30 are taken into account. � 1998 Academic Press

1. INTRODUCTION

In a previous paper [10], we presented a system of moment equations for
radiative transfer problems. In that paper we investigated the covariant form of the
equations as well as the non-relativistic limit. We also tested the equations for two
important cases: local radiative equilibrium and homogeneous processes.

The present paper treats one-dimensional non-equilibrium processes, in par-
ticular radiation beams travelling through gases. For simplicity, we restrict our
attention to the case of homogeneous matter at rest, i.e., the density and the tem-
perature of matter are constant in space and time and the velocity equals zero.

The moment equations for this case were derived in [10] from the covariant
radiative transfer equation by means of the entropy maximum principle.
Nevertheless, we review their derivation in Appendix A, where we consider the
equations in the rest frame of the matter.

The moments on which the theory is based are defined as

ur
(i1 i2 } } } in)=\�

c+
r+3

| |r+2n(i1
} } } nin) f d| d0, r=1, ..., R; n=0, ..., N, (1)

where | is the photon frequency, ni denotes the photon direction vector and f is the
phase density of photons; � is Planck's constant and c is the speed of light. The
indices in angular brackets denote a symmetric traceless tensor. The densities of
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radiative energy e and momentum pi and the radiative pressure tensor Nij are
related to the moments by the relations

e=cu1, pi=u1
i , N ij=

1
3e$ij+cu1

(ij) ; (2)

the other moments have no obvious intuitive physical meaning.
Thus, the total number of moments in the theory is given by the product of the

two numbers R and N. To begin with, the theory is developed for an arbitrary
number of moments and the question arises of how to choose the number of
moments in order to obtain reasonable results from the moment equations. In par-
ticular, the moment equations must predict the same space-time behavior for a pro-
cess as the radiative transfer equation. As in [10], we will consider some simple
processes for which both moment equations and the radiative transfer equation are
solved. The comparison of the results will provide information about the number
of moments needed.

Our set of moment equations differs from those of other authors, e.g., [4, 7,
9, 11], mostly in the production terms and in the occurrence of the number R.
Those of our results which concern the number N for R=1 are valid for these
theories, too.

The plan of the paper is as follows: In Section 2 we briefly review the moment
equations. These are solved in Section 3 for the propagation of a one-dimensional
beam. We shall determine the necessary number of moments N by the consideration
of two distinctive limits, the damped wave limit (absorption dominates) and the dif-
fusion limit (scattering dominates). Whereas in the latter case N=1 will be suf-
ficient, we show that in the first case one must choose N&30 in order to describe
the radiation in accordance with nature.

In order to obtain the necessary number R, we solve the radiative transfer equa-
tion in Section 4 for a beam that penetrates into an atmosphere in the damped
wave limit. The solutions of the radiative transfer equation and of the moment
equations are compared, and we show that they agree, if R&6 holds in the case
of absorption by bremsstrahlung.

2. THE MOMENT EQUATIONS

The moment equations read (see Appendix A for derivation)

�ur

�t
+c

�ur
k

�xk
=& :

R

q=1

3rq(uq&uq
| E)

�ur
(i1 i2 } } } in)

�t
+

n
2n+1

c
�ur

((i1 i2 } } } in&1)

�x in)
+c

�ur
(i1 i2 } } } ink)

�xk
=& :

R

q=1

3� rquq
(i1 i2 } } } in) (3)

�ur
(i1 i2 } } } iN)

�t
+

N
2N+1

c
�ur

((i1 i2 } } } iN&1)

�xiN)
=& :

R

q=1

3� rquq
(i1 i2 } } } iN),
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r=1, ..., R; n=0, ..., N. The matrix of mean absorption coefficients 3rs and the
matrix of mean absorption and scattering coefficients 3� rs are given by

3rs=\kBT
c +

r&s

:
R

t=1

C &1
ts | }(5)

e5

(e5&1)2 5 t+r+2 d5 (4)

and

3� rs=3rs+\kBT
c +

r&s

:
R

t=1

C &1
ts | �(5)

e5

(e5&1)2 5 t+r+2 d5 (5)

with Crs=1(s+r+3) `(s+r+2); u r
| E (T ) denotes the equilibrium value of the

moments,

ur
| E(T )=4?y \kBT

c +
r+3

1(r+3) `(r+3), u r
(i1 i2 } } } in) | E (T )=0 (6)

and T is the temperature of matter; kB denotes Boltzmann's constant.
}(5) and �(5) are the spectral absorption and scattering coefficients, respectively,

written as functions of the dimensionless parameter 5=�|�kBT. As in [10], we
consider only Thomson scattering on electrons and the absorption of bremsstrahlung
with [1, 11]

�T=const. }ff (5)=Dff
1&exp(&5)

5 3 . (7)

The constant Dff depends on atomic constants of the matter. For the matrices, we
obtain

3rs=Dff \kBT
c +

r&s

:
t

1(t+r) `(t+r) C &1
ts (8)

and

3� rs=3rs+�T $rs . (9)

With (3) we have R hierarchies of moment equations, each one consisting of tensor
equations up to rank N. The main problem is the determination of R and N
appropriate to the phenomenon under consideration.

3. PENETRATION OF A BEAM OF RADIATION INTO MATTER

3.1. One-Dimensional Field Equations

We consider the propagation of a one-dimensional beam of radiation into matter.
A typical example occurs when a sun beam penetrates the earth's atmosphere which
here we suppose to have the uniform and constant temperature T.

3NUMBER OF MOMENTS IN RADIATIVE TRANSFER
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The appropriate system of equations is (3) except that now we specialize the
system to one dimension, the direction of the 1-axis or x-axis. We obtain

�ur
(0)

�t
+c

�ur
(1)

�x
=&:

q

3rq(uq
(0)&uq

(0) | E)

�ur
(n)

�t
+

n2

4n2&1
c

�ur
(n&1)

�x
+c

�u r
(n+1)

�x
=&:

q

3� rquq
(n) (10)

�ur
(N)

�t
+

N 2

4N2&1
c

�ur
(N&1)

�x
=&:

q

3� rquq
(N) .

Here we have introduced the abbreviation

ur
(n)=ur

(1 1 } } } 1) . (11)

n-times

Also in what follows we shall abbreviate n2�(4n2&1) as :n .

3.2. Characteristic Speeds and Amplitudes of a Propagating Beam

Since free-flying photons travel with the speed of light c, we know that a beam
propagates with c. The fastest propagation speed implied by the system (10) of
moments, however, is equal to the largest characteristic speed of the system. This
knowledge provides a criterion for the break-off of the system: The number N of
moments ur

(n)��needed for the representation of a beam��is such that the largest
characteristic speed equals c.

The characteristic speeds of the system (10) are the eigenvalues of the matrix1

AAB=c _
0
:1

1
0 1

. . .
. . .

. . .
:N 0& , (12)

which are easy to determine numerically. The value of the largest eigenvalue��and
thus the largest characteristic speed��is plotted in Fig. 1 for different values of N.
Inspection shows that the value c is rapidly approached as N grows. For N�30 we
may say that the largest characteristic speed is equal to c.

Thus for a proper description of a beam of radiation we need as many as 30
moments, at least according to the speed criterion.

4 HENNING STRUCHTRUP

1 Note that the matrix is the same for all of the R systems.



File: 595J 579105 . By:XX . Date:19:05:98 . Time:07:47 LOP8M. V8.B. Page 01:01
Codes: 2103 Signs: 902 . Length: 46 pic 0 pts, 194 mm

FIG. 1. The largest characteristic speed of the moment equations approaches the speed of light
rapidly as N increases.

A beam in vacuum is described by (10) with 3rq=3� rq=0. The solution is
obtained by transformation to the principal axes of (12) and reads

ur
(n)=:

#

R#
n f #(x&V #t), (13)

where R#
n is the eigenvector corresponding to the eigenvalue V #�c and f #(x) is the

amplitude; V # are the characteristic speeds.
For the calculation of the eigenvectors, it is useful to know that the determinant

D#
n+1= }

&V #�c 1

} , n�2 (14)

:1 &V #�c 1
:2 &V #�c 1

. . .
. . .

. . .
:n&1 &V #�c 1

:n &V #�c

obeys the recurrence relation

D#
n+1=&V #�c D#

n&:nD#
n&1 , with D#

0=11, D#
1=&V #�c. (15)

The eigenvalues are the solutions of D#
N+1=0. It is easy to show that the eigenvec-

tors are given by the relation

R#
n=(&1)n D#

n, (16)

where we have set R#
0 equal to 1. The eigenvectors form an orthogonal set with

�n R#
nR=

n=�n R#
nR#

n$#= .

5NUMBER OF MOMENTS IN RADIATIVE TRANSFER
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Since we know that the beam propagates with just one speed, Vmax&c, we have
to stipulate that other characteristic speeds of the system should not appear in the
mathematical description of a beam. This requires that the initial or boundary data
for the beam be chosen properly. Let us consider:

For a beam in x-direction the phase density is a delta function of angle, so that
the moments

ur
i1 i2 } } } in

=\�

c+
r+3

| |r+2ni1
} } } nin

f d| d0, r=1, ..., R; n=0, ..., N, (17)

have vanishing components unless i1=i2= } } } =in=1 holds. We have

ur
1 1 } } } 1=ur, r=1, ..., R; n=0, ..., N

n-times

independent of n and find, by means of equation (3.27) of [10],

ur
(n)=ur

(1 } } } 1) =D� nur (18)

n-times

with

D� n= :
&n�2&

k=0

(&1)k

>k&1
j=0 (2n&2j&1)

n !
(n&2k)! 2k k !

, &n�2&={n�2
(n&1)�2

n even
n uneven.

(19)

The coefficients D� n obey the recurrence relation

D� n+1=D� n&:nD� n&1 with D� 0=1, D� 1=1. (20)

We consider (15) with the maximum characteristic speed V #=Vmax . If we have a
large number N of moments so that��according to Fig. 1��Vmax�c&1 holds, we
find by comparison of (15) and (16)

(&1)n Dmax
n &D� n , (21)

where Dmax
n is the determinant (14) with V #=Vmax . Thus by (16) and (21) we may

write, instead of (18), for the moments in a beam

ur
(n) &Rmax

n ur, r=1, ..., R; n=0, ..., N, (22)

where Rmax
n is the eigenvector corresponding to Vmax . Note that we have ur

(n)=0
for n>N in this approximation which corresponds to the very small values of D� n

for large n.
If the boundary and initial data obey (22) the general solution of (13) reduces to

ur
(n)=Rmax

n f (x&Vmaxt). (23)

6 HENNING STRUCHTRUP
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Thus the beam travels with the maximum characteristic speed. It should be
emphasized that this result follows from the special form (22) of the initial and
boundary data which was constructed by physical arguments. Due to (22) the
initial values of the moments are not independent. From a mathematical point of
view the initial values of the moments may be chosen independent of each other.
In this case one would find all characteristic speeds in the solution (13). We think
that it is impossible to create initial data of this kind.2 If this assumption is correct,
the other characteristic speeds have no physical meaning.

If the beam propagates into an equilibrium state so that ur
(n)=0 (n�1) holds

in front of the beam, we have for n�1

ur
(n)=Rmax

n (ur
(0)&u r

(0) | E). (24)

3.3. Plane Harmonic Waves and Dispersion Relation (General)

The hierarchies (10) are coupled through the right hand sides. But they may
easily be decoupled by a linear transformation of the form

ur
(n)&u r

(n) | E=:
s

Mrsws
(n) (25)

such that the matrix Mrs is the matrix of right eigenvectors of the matrix 3rq . We
have

:
r, q

M &1
sr 3rqMqp=+s$sp ,

where +s are the eigenvalues of 3rq . The decoupling is possible, because 3rq and
3� rq differ only by a unit matrix, see (9). It follows that we may rewrite the R
coupled systems (10) as R uncoupled systems for ws

(n) ,

�ws
(0)

�t
+c

�ws
(1)

�x
=&+s ws

(0)

�ws
(n)

�t
+:nc

�ws
(n&1)

�x
+c

�ws
(n+1)

�x
=&+̂sws

(n) (26)

�ws
(N)

�t
+:Nc

�w s
(N&1)

�x
=&+̂s ws

(N) ;

+̂s equals +s+�T .
We investigate plane harmonic waves of the form

w~ s, 0
(n) exp i(0t&qsx) (27)

7NUMBER OF MOMENTS IN RADIATIVE TRANSFER

2 A similar problem would be to prescribe temperature and heat flux independent of each other at a
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as solutions of the s-system (26). w~ s, 0
(n) are complex amplitudes and 0 and qs are

frequency and wave numbers, respectively. The phase speeds and attenuation
coefficients are given by

vPh=
0

Re(q)
, :s=&Im(q). (28)

Insertion of (27) into (26) provides homogenous algebraic systems of the form

_
&#s ;s 1

&_
w~ s, 0

(0)

&=0, (29)

:1 &;s 1 w~ s, 0
(1)

:2 &;s 1
:3 &;s 1

. . .
. . .

. . .
:N&1 &;s 1

:N &;s w~ s, 0
(N)

where

;s=
+̂s+i0

icqs
, #s=

+s+i0
+̂s+i0

. (30)

These systems have non-trivial solutions, if the determinant vanishes, a condition
which requires the dispersion relation

}
&#; 1

}=0. (31)

:1 &; 1
:2 &; 1

:3 &; 1
. . .

. . .
. . .

:N&1 &; 1
:N &;

3.4. Intense Absorption: The Damped Wave Limit

If there is much more absorption and emission than scattering, we may neglect �.
Hence the difference between +̂s and +s vanishes, so that #s=1 holds.

In that case ;s are the eigenvalues of the matrix A in (12)��independent of s��
or, in other words, the characteristic speeds of the system (10). If the initial and
boundary data are chosen according to (22) the eigenvectors��here w~ s, 0

(n) by
(29)��vanish for all but the largest ;s . That largest value is equal to Vmax�c or, if
N is large enough, it is equal to 1. Thus, by (30), we obtain

qs=
0&i+s

c
(32)

8 HENNING STRUCHTRUP
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so that there is no dispersion and the damping is independent of 0. We have

vPh=c and :=+s �c. (33)

The amplitudes are related according to (24)

w~ s, 0
(n)=(&1)n Dnw~ s, 0

(0) . (34)

The ws
(n)-part of the beam can be represented by a superposition of harmonic

waves��Fourier harmonics with different frequencies 0��so that we may write

ws
(n)=|

�

&�
w~ s, 0

(n) ei(0t&qs x) d0,

or by (32)

ws
(n)=|

�

&�
w~ s, 0

(n) ei0(t&x�c) d0 e&+sx�c. (35)

If we return to the moments ur
(n) , we thus obtain

ur
(n)&ur

(n) | E=:
s

Mrs |
�

&�
w~ s, 0

(n) ei0(t&x�c) d0 e&+s x�c. (36)

Therefore, the beam penetrates the matter as a damped wave propagating with
velocity c. Let the wave be created by a boundary stimulus at x=0 given by the
functions

(u
0

r
(0)&u

0
r
(0) | E)(t)=:

s

Mrs |
�

&�
w~ s, 0

(0) ei0t d0, (37)

u
0

r
(n)=(&1)n Dn(u r

(0)&ur
(0) | E). (38)

The propagating damped wave may then be written in the form3

(ur
(n)&u r

(n) | E)(x, t)=(&1)n Dn :
t \:

s

Mrs e&+s x�cM &1
st + (u

0
t
(0)&u

0
t
(0) | E) \t&

x
c+ .

(39)

Note that, starting from (32), the formulae are valid, if N�30 holds, because
otherwise Vmax is not equal to c.

9NUMBER OF MOMENTS IN RADIATIVE TRANSFER

3 Recall that all ur
(n) | E=0 for n�1, since we let the beam propagate into an equilibrium state.
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3.5. Intense Scattering: The Diffusion Limit

If scattering is more important than absorption and emission, we may set +s=0
and +̂s=�T=�. This gives the system (29) the form

&
0
cqs

1 w~ s, 0
(0)

:1 &
�+i0

icqs
1 w~ s, 0

(1)

. . .
. . .

. . . =0. (40)

:N&1 &
�+i0

icqs
1

:N &
�+i0

icqs
w~ s, 0

(N)

We proceed to solve this system for the special case of small frequencies, i.e., 0<<�
and (cqs ��)2<<1. In that case the system (40) may be reduced to two recurrence
equations, viz.

&
0
cq

w~ s, 0
(0)+w~ s, 0

(1)=0,
icq
`

:nw~ s, 0
(n&1)&w~ s, 0

(n)=0 (n�1). (41)

Hence it follows that all amplitudes vanish unless we have

qs=\- &i(3�0�c2), (42)

independent of s.
Just as the eigenvalue problem (39) belongs to the differential system (26), the

new��approximate��eigenvalue problem (41) belongs to the differential system

�ws
(0)

�t
+c

�w s
(1)

�x
=0

(43)

:nc
�ws

(n&1)

�x
=&�ws

(n) (n=1, ..., N ).

Therefore we conclude that the approximations employed here have reduced the
system to two equations, one for n=0 and n=1. These two equations combine to
give the diffusion equation

�ws
(0)

�t
&

c2

3�

�2ws
(0)

�x2 =0. (44)

All moments ws
(n) with n�1 may be obtained from the solution of (44) by differen-

tiation, cf. (43)2 . We conclude that the predominance of scattering over absorption

10 HENNING STRUCHTRUP
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and emission makes radiation propagate into matter diffusively. Only ws
(0)��hence

us
(0)��is important now and, if we consider it as a superposition of harmonic

waves, we may write

ws
(0)=|

�

&�
w~ s, 0

(0) ei(0t&qs x) d0.

To calculate the corresponding fields (ur
(0)&ur

(0) | E)(x, t) is both easier and more
difficult than in the case of intense absorption: easier, because qs is independent of
s now, and more difficult, since q is not a linear function of 0. We obtain

(ur
(0)&ur

(0) | E)(x, t)

=|
�

&�
(u

0
t
(0)&u

0
t
(0) | E)({) _|

�

0
e&- (3�0�2c2) x cos \0(t&{)&�3�0

2c2 x+ d0& d{,

(45)

where

(u
0

t
(0) &u

0
t
(0) | E)(t)

are the boundary values as functions of time.

3.6. The General Case and a Simple Example

In general, we shall have both absorption and emission, as well as scattering. The
beam created by a boundary stimulus is then quite difficult to calculate and it
would not be very instructive to describe the method that must be followed. But the
result is bound to be given��at least qualitatively��as shown in Fig. 2 which refers
to a short-pulse-stimulus: The damped pulse arrives first and it drags a wake of
scattered radiation behind it.

The curve of Fig. 2 has been calculated for the case R=1 and N=4 and for }
and � independent of k. The duration of the pulse 2t was chosen to make t, x, }
and � dimensionless

t� =t�2t, x� =x�c2t, }� =}2t, �� =�2t.

The total energy supply e=�c(u1&u1
| E) 2t (i.e., the area below the curve) was

equal to e0 when the pulse was created and at x� =20��in Fig. 2��it has already
dropped to less than 0.00081e0 . The peak is due to photons that have passed the
matter without any interaction and the long wake behind the peak stems from scat-
tered photons. Note that the peak does not propagate with the speed of light, since
we have chosen N equal to 4.

11NUMBER OF MOMENTS IN RADIATIVE TRANSFER
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FIG. 2. Propagation of a damped pulse followed by a wake of scattered radiation.

4. A BEAM IN AN ABSORBING ATMOSPHERE

4.1. Phase Density in Distance r from a Star

We consider a star of radius Rx which emits black body radiation of temperature
Tx . An observer outside the star sees only radiation with direction vectors pointing
from the sun to the observer. In this direction, the frequency distribution is given
by the equilibrium phase density

f | E (Tx)=
1

4?3

1
exp(�|�kB T )&1

, (46)

while it is equal to zero in all other directions. If we define angles such that the
photon direction vector is given by ni=[sin � cos ., sin � sin ., cos �]i , we find for
the distribution function in distance r

fr={
f | E (Tx),

0,

� # \0, arcsin
Rx

r + , . # (0, 2?)

� # \arcsin
Rx

r
, ?�2+ , . # (0, 2?).

(47)

4.2. Moments in Distance r

We calculate the moments from (1) with the phase density (46) far away from the
star, i.e. when Rx �r<<1 holds. In this limit, the only non-vanishing part of the
moments is

12 HENNING STRUCHTRUP
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ur
3 } } } 3=\�

c+
r+3

| |r+2n3 } } } n3 f d| d0

n-times

=\�

c+
r+3

|
�

0
|r+2 f | E (Tx) d| |

arcsin(Rx �r)

0
cosn �f sin � d� |

2?

0
d.

&
ur

| E (Tx)
4 \Rx

r +
2

.

We are only interested in the traceless part of ur
3 } } } 3 and obtain, with equation (34)

in [10],

ur
(n)=ur

(3 } } } 3)=D� nur with ur=
ur

| E (Tx)
4 \Rx

r +
2

; (48)

n-times

D� n is given by (19). Equation (48) agrees with our result from the moment equa-
tions (22) if we set Vmax�c=1 in (15).

4.3. A Beam (Boundary Value Problem)

Now we consider the penetration of a short plane radiation pulse into an isothermal
absorbing atmosphere of constant density. We consider this to be a one-dimensional
problem and write the one-dimensional radiative transfer equation as [4, 7]

�f
�t

+c
�f
�x

=&}( f & f | E (T )). (49)

} is the absorption coefficient and T denotes the temperature of the atmosphere.
We consider the following initial and boundary values

f (t, x=0)= f | E (T )+ fr(Tx) F(t), (50)

f (t=0, x)= f | E (T ), (51)

where fr(Tx) is given by (47)4 and F(t) is a window function, viz.

F(t)={1,
0,

t # (0, 2t)
else.

(52)

In terms of moments, the initial and boundary data read

ur
(n)(t, x=0)=ur

(n) | E (T )+D� n
u r

| E (Tx)
4 \Rx

r +
2

F(t) (53)

13NUMBER OF MOMENTS IN RADIATIVE TRANSFER

4 We neglect the expansion of the beam, i.e. we consider only distances which are much smaller than
the distance from the star.
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and

ur
(n)(t=0, x)=ur

(n) | E (T ). (54)

4.4. Solution of Radiative Transfer Equation

The solution of (49)�(52) is given by

f (t, x)= f | E (T )+ fr(Tx) F \t&
x
c+ exp &}

x
c

. (55)

Now we are able to compute the moments as functions of space and time. We intro-
duce dimensionless measures for the scalar moments, viz.

vr=4
ur&ur

| E (T )
u r

| E (Tx)(Rx �r)2 (56)

and obtain for their space-time dependence5

vr(t, x)=
F(t&(x�c))

1(r+3) `(r+3) |
5 r+2

x

e5x&1
e&}((Tx �T ) 5x)(x�c) d5x (57)

and

vr
(n)(t, x)=D� nvr(t, x), (58)

where 5x stands for �|�kB Tx . The integral in (57) must be evaluated numerically.
The interpretation of (57) is simple: The boundary stimulus moves with the speed
of light c into the atmosphere, and its amplitude is damped due to absorption pro-
cesses. We will compare this solution with the solution of the moment equations in
the next section.

4.5. Solution of Moment Equations

From (39), we obtain with (53), (54), (56)

vr(t, x)=F \t&
x
c+ :

t

:
s

MrsM &1
st

(kBTx �c)t 1(t+3) `(t+3)
(kBTx �c)r 1(r+3) `(r+3)

e&+sx�c (59)

and

vr
(n)(t, x)=Dnvr(t, x), (60)

14 HENNING STRUCHTRUP

5 We consider the absorption coefficient given as function of the dimensionless parameter 5=�|�kBT,
where T is the temperature of the atmosphere. We have 5=(Tx�T ) 5x .
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where +s are the eigenvalues of the matrix of mean absorption coefficients, given
by (4)

3rs=\kBT
c +

r&s

:
R

t=1

C &1
ts | }(5)

e5

(e5&1)2 5 t+r+2 d5. (61)

We rewrite (59) as

vr(t, x)=F \t&
x
c+ :

t

:
s

M� rsM� &1
st e&+sx�c (62)

where M� rs is the matrix of right eigenvectors of

3� rs=
(kBTx �c)s 1(s+3) `(s+3)
(kBTx �c)r 1(r+3) `(r+3)

3rs

=\ T
Tx+

r&s 1(s+3) `(s+3)
1(r+3) `(r+3)

:
R

t=1

C &1
ts | }(5 )

e5

(e5&1)2 5 t+r+2 d5, (63)

which has the same eigenvalues +s as 3rq . Here only the ratio Tx �T occurs and we
conclude that the absolute values of the temperatures play no role in the calculation
of the dimensionless variables vr.

4.6. Comparison of Solutions

We need to compare only the damping parts of (57) and (59), i.e., the quantities
without the factor F(t&(x�c)). We consider bremsstrahlung absorption with }
given by (7), introduce the dimensionless space variable

x~ =
Df f

c \ T
Tx+

3

x (64)

and obtain for these parts

v̂r(t, x)=
1

1(r+3) `(r+3) |
5 r+2

x

e5x&1
e&[1&exp(&(Tx �T ) 5x)�53

x
] x~ d5x (65)

and

v� r(t, x)=:
t

:
s

M� rsM� &1
st e&+~ s x~ , (66)

where v̂r refers to the solution of the radiative transfer equation and v� r to the solu-
tion of the moment equations. +~ s in (66) are the eigenvalues of

15NUMBER OF MOMENTS IN RADIATIVE TRANSFER
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3�� rs=
1

Dff \
Tx

T +
3

3� rs (67)

=\Tx

T +
s&r+3 1(s+3) `(s+3)

1(r+3) `(r+3)
:
R

t=1

C &1
ts 1(r+t) `(r+t). (68)

The moment equations were derived from the radiative transfer equation in order
to replace the latter by a finite number of moment equations. Therefore, we con-
sider solutions of the moment equations as satisfactory, if they agree with the solu-
tion of the radiative transfer equation. In the following, we will compare only v̂1

and v� 1, which are measures for the energy density of the beam.
While the solution of the radiative transfer equation (65) depends on the single

parameter Tx �T, the moment solution (66) depends on Tx �T and on the number
R of moments. We will compare both solutions for several values Tx �T and dif-
ferent values of R. In all figures to follow, the solution of the radiative transfer
equation is drawn as a dashed line, while solid lines refer to solutions of the
moment equations.

We start with the case Tx �T=1. Figure 3 shows that the moment theory with
R=1 gives only qualitative agreement with the radiative transfer equation, while
the moment theory with R=6 agrees almost perfectly with that solution. The same
is true for moment theories with R�6.

In summary we conclude that we have to choose a moment theory with moment
numbers N&30 and R=6 in order to describe the beam in the absorbing atmo-
sphere in accordance with the radiative transfer equation. In [10], we found the
same value R=6 when we considered the homogeneous compression of radiation.
Note that the value R=6 holds for the special case of bremsstrahlung absorption;

FIG. 3. v1(x~ ) according to the radiative transfer equation (dashed line) and according to moment
theories with R=1 and R=6 (solid line). Tx �T=1.

16 HENNING STRUCHTRUP
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other values will result for R when different absorption and emission mechanisms
dominate.

Now we ask whether R=6 gives reasonable results for other values of the tem-
perature ratio Tx �T, i.e., if the temperature of the star and the absorbing atmo-
sphere are different. The result is as follows: In the range 0.5�Tx �T�1.8, there is
no visible change in the figure. But if Tx �T lies outside this domain, the picture
changes considerably. As an example, Fig. 4 shows the result for Tx �T=0.25. It
is clearly seen from the figure that we have to increase the number R to a value
of R=14 in order to have agreement with the solution of the radiative transfer
equation.

Most probably the number R must be further increased for lower values of Tx �T
but here we have had problems with the numerical accuracy in solving the eigen-
value problem in (66).

In the case Tx �T�1.8, the situation is worse: The solutions of the moment
theories become non-monotone with high, even negative, peaks, and an increase of
R gives even worse results. Since this may be due to numerical inaccuracies, we do
not present the curves for this case.6

4.7. A Better Approximation

We conclude that the moment theory in its present form gives very good results
in the case that Tx �T lies in the vicinity of one. But typically Tx �T has values
which differ considerably from one; for a sun-beam and the earth's atmosphere we
find Tx �T&20.

In order to understand why the moment equations give good results for
Tx �T&1 and why the number of moments must be increased��at the cost of con-
siderable numerical difficulties��when Tx �T exeeds the value 1.8, we comment on
the derivation of the matrix of mean absorption coefficients (4) which may be found
in Appendix A.

This derivation includes a series expansion of the phase density obtained from the
entropy maximum principle about the local equilibrium phase density, which is
determined by the local temperature T. An expansion is needed because it is
impossible to calculate integrals over the original phase density. It is only on
account of this expansion that the temperature occurs in the matrices of mean
absorption and scattering coefficients.

Now, if the phase density differs considerably from the local equilibrium phase
density, e.g., for the sun-beam, we need a lot of expansion coefficients in order to
have a good approximation of the phase density. Since the number of moments
equals the number of expansion coefficients, we need many moments as well.

After these remarks it is understandable that an expansion about a non-local
equilibrium phase density may give better results. Appendix B discusses the proce-
dure in detail. It is shown that the only change in the moment equation occurs in

17NUMBER OF MOMENTS IN RADIATIVE TRANSFER

6 The numerical inaccuracy results mainly from the inversion of the matrix Crs=1(s+r+3)_
`(s+r+2). The elements of this matrix differ in magnitude by several orders.
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FIG. 4. v1(x~ ) according to the radiative transfer equation (dashed line) and according to moment
theories with R=1, R=6 and R=14 (solid line). Tx �T=0.25.

the definition of the matrices 3rs and 3� rs . If % is the temperature of the non-local
equilibrium, we find for instance that 3rs must be replaced by (A.34)

3%
rs=\kB %

c +
r&s

:
t

C &1
ts | } \5%

%
T+

e5%

(e5%&1)2 5 t+r+2
% d5% , (69)

where 5%=�|�kB%. Specificially for the beam problem, we need the eigenvalues and
eigenvectors of the matrix (see (63), (68))

3�� rs=
1

Dff \
Tx

T +
3 (kBTx �c)s 1(s+3) `(s+3)

(kBTx �c)r 1(r+3) `(r+3)
3rs , (70)

and we find with 3rs replaced by (69)

3�� rs=\Tx

% +
s&r+3 1(s+3) `(s+3)

1(r+3) `(r+3)
:
R

t=1

C &1
ts |

(1&exp(&5%(%�T ))) e5%

(e5%&1)2 5 t+r+1
% d5% .

(71)

3�� rs must be calculated numerically. With %, we have an additional parameter in the
system of moment equations. In the problem under consideration it is suggestive to
take % equal to the temperature of the beam, %=Tx . Figure 5 shows results from
the moment equations with this choice for large differences between beam and
atmospheric temperature. It is clearly seen that the choice R=6 gives an excellent
agreement between the solutions of moment equations and radiative transfer equa-
tion for all values of the ratio Tx �T.

18 HENNING STRUCHTRUP



File: 595J 579119 . By:XX . Date:19:05:98 . Time:07:48 LOP8M. V8.B. Page 01:01
Codes: 1354 Signs: 833 . Length: 46 pic 0 pts, 194 mm

FIG. 5. v1(x~ ) according to the radiative transfer equation (dashed line) and according to moment
theories with R=1 and R=6 (solid line) for Tx �T=0.01 and Tx �T=40.

4.8. A Comment on Absorption Coefficients

The matrices 3rq , 3� rq (4), (5) depend strongly on the absorption and scattering
coefficients under consideration. In particular it follows that the number of
moments R which was discussed in the previous sections of this paper depends on
the choice of the absorption coefficient }. While for the proper description of gray
matter (}=const.) a value of R=1 gives excellent results, one needs very large
values of R for more complex absorption coefficients.

As an example we considered a simple model absorption coefficient for
bremsstrahlung absorption and single-line photo-absorption, viz.

19NUMBER OF MOMENTS IN RADIATIVE TRANSFER
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}={
Dff

1&exp(&5)
5 3

Dff (1+a) \1&exp(&5)
5 3 +

0<5<50

5>50 .
(72)

Numerical tests show that the necessary number R depends on the values 50 and
the ``step'' a. A moment number R=12 gives excellent results for 50=0.5, a<8.6;
50=1, a<3.8 and 50=2, a<1.5. Thus the moments method works for discon-
tinuous absorption coefficients if the step is not to big.

It was not possible to obtain accurate results for higher values of the step a. Most
probably this is due to numerical inaccuracies which occur in the inversion of the
matrices and the calculation of the eigenvalues. In theses cases the moment method
should not be used.

5. CONCLUSION

We have shown in this paper that the extended moment theory with matrices of
mean absorption and scattering coefficients, originally presented in [10], is a good
tool for the calculation of non-homogeneous non-equilibrium processes. In par-
ticular, we have shown that the number of moments in the theory may be adjusted
so that, at least for the simple case of a beam penetrating an isothermal atmo-
sphere, the moment theory gives the same results as the radiative transfer equation.

We strongly believe that the extended moment theory will give excellent results
in more complex cases too, and we suggest that the simple beam process of the
present paper may serve as an indicator for the number of moments which are
needed.

APPENDIX A. THE EQUATIONS OF RADIATION THERMODYNAMICS

A.1. Distribution Function and Radiative Transfer Equation

We describe radiation in the photon picture. Photons are characterized by their
momentum pPh

i or, alternatively, by their frequency | and their direction vector ni

with pPh
i =�|�c; the photon energy is E=�|. � denotes Planck's constant divided

by 2? and c is the speed of light. The photon distribution function

f (xi , t, pi) dp=\�

c+
3

f (x i , t, |, ni) |2 d| d0 (A.1)

gives the number density of photons with momenta in the vicinity of p or with fre-
quencies in (|, |+d|) and directions within the solid angle d0=sin � d� d.. The

20 HENNING STRUCHTRUP
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photon distribution function f satisfies the radiative transfer equation which reads
in the rest frame of matter [2, 4, 7]

�f
�t

+cnk
�f

�xk
=S=&}( f &f | E)&� _ f (|, ni)&

1
4? | f (|, n$i) d0$& . (A.2)

Here the right hand side accounts for the creation and annihilation of photons due
to interaction with matter. The first term describes absorption and emission. }(|)
is the effective absorption coefficient and

f | E=
1

4?3

1
exp(�|�kBT )&1

(A.3)

denotes the equilibrium distribution. kB is Boltzmann's constant and T is the tem-
perature of matter. Scattering processes are described by the second term; here we
restrict the attention to the case of isotropic scattering. �(|) is the scattering coef-
ficient. The functions �(|), }(|) depend on the mechanisms of interaction.

A.2. Moments and Moment Equations

The moments of the phase density are defined as

ur
(i1 i2 } } } in)=\�

c+
r+3

| |r+2n(i1
} } } nin) f d|d0. (A.4)

n(i1
} } } n in) are spherical harmonics which form an orthogonal set of functions [12].

The moment equations follow by multiplication of the radiative transfer equation
with |rn(i1

} } } n in) and integration. They read

�u r
(i1 i2 } } } in)

�t
+

n
2n+1

c
�u r

((i1 i2 } } } in&1)

�xin)
+c

�u r
(i1 i2 } } } ink)

�xk
=Pr

(i1 i2 } } } in) . (A.5)

The quantities

Pr
(i1 i2 } } } in)=\�

c+
r+3

| |r+2n(i1
} } } nin) S d| d0 (A.6)

are called the productions of the moments ur
(i1 i2 } } } in) .

A.3. Closure Problem

Equations (A.5) form an infinite set of coupled PDEs. Since we need a finite
number of equations, we assume that the knowledge of the moments

ur
(i1 i2 } } } in) , r=1, ..., R; n=0, 1, ..., N (A.7)

21NUMBER OF MOMENTS IN RADIATIVE TRANSFER
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with R, N�1 describes the process with sufficient accuracy7. Equations (A.5) with
r=1, ..., R; n=0, ..., N do not form a closed set of equations. Therefore, we need
equations of state which relate the moments

ur
(i1 i2 } } } iN+1) , r=1, ..., R, (A.8)

and the productions

Pr
(i1 i2 } } } in) , r=1, ..., R; n=0, 1, ..., N. (A.9)

to the moments (A.7). We find the equations of state by means of the entropy maxi-
mum principle [3] in the next section. The entropy maximum principle is equiv-
alent to the entropy principle of extended thermodynamics [5].

A.4. The Entropy Maximum Principle

Since the quantities (A.8), (A.9) follow from the distribution function by (A.4),
(A.6), we may find the required equations of state if we have the distribution func-
tion as function of the moments (A.7), f =f (ur

(i1 i2 } } } in)(x i , t), |, ni). Such a distribu-
tion function follows from the entropy maximum principle which states that f has
to be the function that maximizes the entropy of radiation [6, 8]

h=&kB | _ f ln
f
y

&( y+ f ) ln \1+
f
y+& dp, with y=2�(2?�)3 (A.10)

under the constraint of given values of the ur
(i1 i2 } } } in) . By a common procedure, we

obtain

f =
y

exp 5&1
with 5=

1
kB

:
r, n

4r
(i1 i2 } } } in) \�|

c +
r

n(i1
} } } nin) , (A.11)

where the 4r
(i1 i2 } } } in) are Lagrange multipliers. The 4r

(i1 i2 } } } in) must be determined
from the constraints

ur
(i1 i2 } } } in)=\�

c+
r+3

| |r+2n(i1
} } } nin) f d| d0, r=1, ..., R; n=0, ..., N.

(A.12)

A.5. Expansion about Local Equilibrium

Unfortunately it is not possible to calculate integrals over the function (A.11).
For this reason, we expand (A.11) about equilibrium. Comparison with the

22 HENNING STRUCHTRUP

7 It is necessary to start with r=1 instead of r=0, see [10].
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equilibrium distribution (A.3) shows that almost all Lagrange multipliers vanish in
equilibrium,

4r
(i1 i2 } } } in) | E={

c
T

, r=1, n=0
(A.13)

0, else.

We therefore write

1
kB

4r
(i1 i2 } } } in)=

c
kBT

$r1$n0+*r
(i1 i2 } } } in) (A.14)

and assume that the * r
(i1 i2 } } } in) are small. A Taylor expansion gives

f r f | E (k, T )+
df | E

d5 | E
:
r, n

*r
(i1 i2 } } } in) \�|

c +
r

n(i1
} } } nin) . (A.15)

Thus, f is an expansion in |r and n(i1
} } } nin) . From (A.12), (A.15), we obtain the

*r
(i1 i2 } } } in) as

*t
( i1 i2 } } } in)=&

>n
j=0 (2j+1)

n !
:
r

C&1
tr

ur
(i1 i2 } } } in)&ur

(i1 i2 } } } in) | E

4?y(kBT�c)r+t+3 (A.16)

with the abbreviations

ur
| E(T )=4?y \kBT

c +
r+3

1(r+3) `(r+3), u r
(i1 i2 } } } in) | E (T )=0 (A.17)

and

Crs=1(s+r+3) `(s+r+2), r, s=1, ..., R. (A.18)

1(x) denotes the Gamma function and `(x) is Riemann's Zeta function.

A.6. Equations of State

With (A.15), (A.16), we are able to calculate the equations of state (A8), (A.9).
We obtain

ur
(i1 i2 } } } iN+1)=0, r=1, ..., R (A.19)

for the highest moments while the productions are given by

Pr=&:
s

3rs(us&us
| E (T )) (A.20)
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and

Pr
(i1 i2 } } } in)= &:

s

3� rsu s
(i1 i2 } } } in) . (A.21)

Here, 3rs is the matrix of mean absorption coefficients (4), and 3� rs is the matrix
of mean absorption and scattering coefficients (5).

APPENDIX B. EXPANSION ABOUT NON-LOCAL EQUILIBRIUM

B.1. Phase Density

The expansion of (A.11) about the local equilibrium phase density is not suitable
for all processes. In particular, it is not if a sun beam enters into an atmosphere.
This is due to the fact that the spectrum of the beam is determined by the tem-
perature of the sun. Therefore an expansion about the local equilibrium phase den-
sity, which is determined by the local temperature, is not suitable. Here, we have
the possibility to expand about a non-local equilibrium phase density with tem-
perature %. Instead of (A.14), we write

1
kB

4r
(i1 i2 } } } in)=

c
kB%

$r1 $n0+*� r
(i1 i2 } } } in) , (A.22)

and, by the assumption that the *� r
(i1 i2 } } } in) are small, we obtain instead of (A.15)

f r f%(k, %)+
df%

d5%
:
r, n

*� r
(i1 i2 } } } in) \�|

c +
r

n(i1
} } } nin) , (A.23)

where we have introduced the abbreviations

f%=
y

exp 5%&1
, 5%=

�|
kB%

. (A.24)

For the Lagrange multipliers we obtain in this case

*� r
(i1 i2 } } } in)=&

>n
j=0 (2j+1)

n !
:
t

C&1
rt

u t
( i1 i2 } } } in) &u t

( i1 i2 } } } in) | %

4?y(kB%�c)r+t+3 , (A.25)

where

ur
| %=4?y\kB %

c +
r+3

1(r+3) `(r+3), u r
(i1 i2 } } } in) | %=0. (A.26)

But now we have a problem with the local equilibrium phase density: If we intro-
duce the local equilibrium values (A.17) of the moments into (A.23), (A.25), we
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should obtain��at least approximately��the local equilibrium phase density. If we
do so, we obtain

f | E r f%&
df%

d5%
:
r

*� r
| E (T, %) \�|

c +
r

(A.27)

with

*� r
| E (T, %)=:

t

C&1
rt

u t
| E (T )&u t

| %(%)

4?y(kB%�c)r+t+3 . (A.28)

Only if we expand both the actual phase density f and the local equilibrium phase
density according to (A.23), (A.27) will the photon production density S vanish in
equilibrium. We may eliminate f% between (A.23) and (A.27) and find for the phase
density

f r f | E+
df%

d5%
:
r, n

*� r
(i1 i2 } } } in) \�|

c +
r

n(i1
} } } nin) (A.29)

with

*� r
(i1 i2 } } } in)=

>n
j=0 (2j+1)

n !
:
t

C&1
rt

u t
(i1 i2 } } } in) &u t

(i1 i2 } } } in) | E (T)

4?y(kB%�c)r+t+3 . (A.30)

We will use the phase density (A.29) for the calculation of the equations of state.
Note: The procedure of this section seems to be artificial, but it may be justified

by the results which it gives. While we have taken % as an external and constant
input, one could think also of % as a variable which goes to T when the radiation
reaches equilibrium. But that would require an equation for %��which should then
replace one of the moment equations, of course��and it is not clear how to obtain
that equation. Also one must bear in mind that no temperature would occur in the
phase density f, if we were able to calculate the integrals (A.11).

B.2. Equations of State

With (A.29), (A.30) we are able to calculate the equations of state (A.8), (A.9).
Again we obtain

ur
(i1 i2 } } } iN+1)=0, r=1, ..., R (A.31)

for the highest moments, while the productions turn out to be

Pr=&:
s

3 %
rs(u

s&u s
| E (T )) (A.32)
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and

Pr
(i1 i2 } } } in)= &:

s

3� %
rsu s

(i1 i2 } } } in) . (A.33)

Now, 3%
rs and 3� %

rs are given by

3%
rs=\kB %

c +
r&s

:
t

C&1
ts | } \5%

%
T +

e5%

(e5%&1)2 5 t+r+2
% d5% (A.34)

and

3� %
rs=3%

rs+\kB%
c +

r&s

:
t

C&1
ts | � \5%

%
T +

e5%

(e5%&1)2 5 t+r+2
% d5% . (A.35)
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