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ABSTRACT

We discuss the physical significance of a special Eddington factor, intro-
duced into radiative transfer theory by Levermore (1983) and obtained
also by Anile et.al. (1991) and Kremer&Miiller (1992). Since that Ed-
dington factor follows from the maximization of entropy, it is not suitable
for the description of radiation beams. Indeed, there are only few phys-
ical situations in which it may play a role.

PACS 95.30.Jx/42.86.Ay/44.40.4a (Radiative Transfer)

1 EDDINGTON FACTOR

The balances of radiative energy density e and radiative mo-
mentum density p; may be written as
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Here @); denotes the radiative energy flux, Nj; is the radiative
pressure tensor and P, P, stand for the interchange of energy
and momentum with matter, due to absorption, emission and
scattering.

We describe the radiation in the photon picture. The energy
of a photon is Aiw and its momentum is given by hAk. Fre-
quency w and wave vector k are related by the dispersion
relation w = ck = ¢ |k|; ¢ is the speed of light and A denotes
Planck’s constant divided by 27. The direction of propaga-
tion is given by k/k.

The phase density f is defined such that

f(x,kt)dk = f(x,kt)k*dkdQ (2)
gives the number density of photons with wave vectors be-
tween k and k+dk; dQ is the solid angle element sin 4 did dp
in the direction (¥, ¢) of propagation. With these definitions
the densities of energy and momentum of the photon gas and
their fluxes are given by the relations [1, 2]:
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From (3), (5) follows that the trace of the pressure tensor is
equal to the energy density,
The equations (1) do not form a closed set of equations for the
radiative quantities e and p;, since they include the unknown
pressure tensor N;; and the productions terms P, and P,,.
The latter can only be calculated by detailed knowledge of the
interaction of radiation and matter and we do not consider

them in the sequel. Here we are interested in the pressure
tensor N;; alone.

In general N;; will depend on space and time via the actual
values of e and p; and their space-time derivatives of any
order. Under the special assumption that the pressure tensor
is independent of all gradients, i.e. depends only on e and p;
this dependence must be of the form
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where y depends on e and p? = p;p;. Obviously (7) fulfills the
trace condition (6). The function x (e, p2) is called Eddington
factor and it remains to find its explicit form.

By the simple assumption that there is a special frame, in
which the radiation field is isotropic, Levermore [3] obtained
the Eddington factor as
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Anile et.al. [4] have derived the same function for the Ed-
dington factor by extended thermodynamics and so did Kre-
mer&Miiller [5] in a slightly different manner.

For the equilibrium case p; = 0 the Levermore-Eddington
factor becomes yr = % For p; = e/cn;, when all photons

travel in the same direction n;, we have 7 = 1 and find

)

Thus it would seem that the theory is able to cover the whole
range of states from equilibrium to the free streaming case,

Nij = €n;n;.

1.e. beams of radiation.

The aim of this paper is to discuss, in which physical sit-
uations the Levermore-Eddington factor is appropriate. In
particular, we shall show that the Eddington factor (8) is not



suitable for the decription of radiation beams, because it im-
plies an infinite energy density for the beam. Moreover, we
shall present arguments to prove that this Eddington factor
pertains to the case of radiation in equilibrium with moving
matter, at least in the most cases. We will also discuss situa-
tions in which the Levermore-Eddington factor is suitable for
non-equilibrium cases.

The entropy maximum principle [6] is equivalent to extended
thermodynamics and we will use 1t to derive the equilibrium
phase density in Section IT and a phase density which will lead
to the Levermore-Eddington factor in Section III. In section
IV we shall compare it with the equilibrium phase density
seen from outside the rest frame of matter. Thus we will
come to the above mentioned conclusions.

2 EQUILIBRIUM

Equilibrium of a photon gas means that it is in equilibrium
with matter of temperature T. The energy density e char-
acterizes the equilibrium state of the photon gas completely
and we may obtain the equilibrium phase density fjz by max-
imization of the radiative entropy under the constraint of a

/ hek f dk. The

prescribed value for the energy density e =

radiative entropy density is given by [7, 8]
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where y = 2/ (27)" and kp denotes Boltzmann’s constant.
We take care of the constraint by a Lagrangian multiplier A,
and obtain

fie =

(10)

Yy
fick (11)

exp EAE -1

It remains to calculate the Lagrange multiplier A, from the
constraint and we find

e ()

where a = %% denotes the radiation constant. In equi-
librium the Stephan-Boltzmann law ¢ = a7* holds and we
indentify A = 1/7. With (11) we obtain from (5) for the

pressure tensor

(12)
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Comparison with the definition of the Eddington factor (7)
shows that x = 1/3 in this case.

Now we ask for the phase densitiy and the fields which are
observed in a Lorentz frame that moves with the velocity v;
relative to the rest frame of matter. Let k and f; denote wave
number and direction vector in this frame. Then we have, due

to the Doppler effect, the following relation between the wave
number k in the rest frame and k and 7; [9]
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Since the phase density is a relativistic invariant [1] the dis-
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tribution function in the moving frame is given by
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The value of the fields follows from (3), if we replace k,n;, f
by k,fy, f. We obtain

e:aT41+_%LC2_2, pi:gacljljzw, (16)
N;j = aT* (%&j % CE_UZ;Z) , (17)

for the Eddington factor we find
X = 1313—_ ' (18)

The anisotropy is due to aberration. If v approaches the speed
of light ¢ we have p; = e¢/cn; with the unit direction vector
n; = v;/c. This is the condition of the free streaming case,
when all photons move in the same direction n;; note that
both, e and p;, tend to infinity in this case.

3 LEVERMORE EDDINGTON FACTOR

Now we assume, that e and p; characterize the state of the
photon gas completely. To determine the phase density f, for
this case, we maximize the radiative entropy (10) under the
constraint of prescribed values for e and p;. Again we take
care of the constraints by Lagrangian multipliers A., A; and

find
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From (3), (4) we obtain with (19)
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By inversion we obtain A, and A; in terms of e and p;,
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where we have introduced the Levermore Eddington factor

XL =5 —3y/1— %ngz (8) for abbreviation. To our knowl-

edge these calculations were first done by Larecki [10] in the
field of the kinetic theory of phonons.

The phase density f, is thus explicitly related to e and p; and
we may now calculate the radiative pressure tensor N;; from

(5). We obtain
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which is (7) with the Levermore Eddington factor. The above
calculations rely on the entropy maximum principle which is
equivalent to extended thermodynamics [6]. Thus this proce-
dure is equivalent, although easier, to the ones by Anile et al.
[4] and Kremer&Miiller [5]; and naturally we obtain the same
results. The entropy maximum principle gives not only the
Eddington factor, but also the corresponding phase density.

By comparison of (19) and (15) we find that we can replace
the unknowns A, A; in (19) by two other unknowns 7', v; such
that
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and therefore we can write (19) as
fo = M(lyl ) (23)
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From (21), (22) we find for the relations between e, p; and T
and v;
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We conclude from (23) that there exists a Lorentz frame -
moving with the speed v; given in (25) - where the phase
density is isotropic. We write the phase density in this special
frame as

¥ Y
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where k is the wave number in the new frame
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fp in (26) is the equilibrium phase density with temperature
T as given in (24).

In other words: If the radiation field is characterized by the
phase density (19) - with A., A,, as in (21) - there exists a
frame where this radiation field has the equilibrium phase
density appropriate to the temperature 7" and this frame

moves with velocity v;. T and w; are related to e and p;

by (24), (25).

4 INTERPRETATION

In the limit xp — 1, which is supposed to correspond to
beams, we find from (25) that this special frame moves with
the speed of light. From (24) we have to conclude that the
energy density of the beam is infinite, since the temperature
T in the rest frame must be unequal to zero. It follows that
the Levermore-Eddington factor should not be used for the
description of beams.

Note that the frequency distribution of beams emerging from
the surfaces of stars obeys Planck’s law, but the distribution
is anisotropic (see Section 4 of Struchtrup 1997 [11]). There is
no transformation which will lead to an isotropic distribution.

The only entropy-maximizing process which will lead to the
equilibrium phase density is the interaction of radiation with
matter of temperature T at rest. We have to conclude that
the Levermore-Eddington factor belongs to physical situa-
tions where the radiation is in equilibrium with matter of
temperature 1", or at least has been in equilibrium with such
matter.

In the first case, where the radiation is in equilibrium with
matter, the Eddington factor is equal to 15 in the rest frame
of the matter. If the radiation is not observed in the rest
frame but in a moving frame, the Eddington factor has the
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Eddington factor results entirely from the motion of the mat-
ter relative to the observer. The phase density (19) with (21)
does not characterize a non-equilibrium between matter and

radiation, - or only apparently.

this complicated form of the

In the second case the radiation has been in equilibrium with
matter of temperature 7. We may ask for cases where at
one time equilibrium prevailed between radiation and matter
and does no more. Actually equilibrium may be lost by the
“decoupling” of matter and radiation. After decoupling the
matter may be removed leaving isotropic radiation. After
that new matter - which moves relative to the frame of the
isotropic radiation - may be inserted in the radiation field.
Thus one ends up with an isotropic Planck law for radiation
outside the rest frame of matter.

There remains the question of how radiation and matter may
be decoupled. The best-known case is the cosmic background



radiation, where the decoupling is due to the expansion of
the universe [12]. Another possible way to achieve equilib-
rium radiation without matter, is to consider a cylinder with
ideally reflecting walls. First one has a small piece of matter,
which absorbs and emits all frequencies, of temperature 7" in
the cylinder so that the radiation is in equilibrium. Then,
one removes the matter and obtains equilibrium radiation of
temperature 7" in the cylinder, but no matter. Here, the de-
coupling process is the removal of the matter. Afterwards new
matter maybe put into the cylinder. If the matter moves rela-
tive to the cylinder, we should have a proper non-equilibrium
setting for the use of the Levermore Eddington factor. This
setting is rather artificial and we cannot think of a real pro-
cess which will lead to the same physical state, except the
expansion of the universe.

Moreover, the description of radiation by the two quantities
energy density e and momentum density p; will in most cases
not be in accordance with the radiative transfer equation.
In two papers we have shown that already simple processes,
such as one-dimensional beams or isotropic compression of
radiation, require a large number of moments in order to give
valid solutions[11, 13].
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