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Abstract

We consider the BGK-model with velocity dependent collision frequency. By use of the
Chapman-Enskog method we calculate thermal conductivity and viscosity. We show that
a simple power law for the collision frequency may lead to the proper Prandtl number.
Moreover we use Grad’s moment method to calculate thermal conductivity and viscosity.
We show that the results of both methods coincide if Grad’s method is based on a large
number of moments.

1 Introduction

Because of its simplicity compared to the Boltzmann equation the BGK equation is widely
used in the kinetic theory of gases. This equation provides a good model in particular for the
derivation of qualitatively good results. For quantitative results the model is less good; for
instance the BGK equation with constant collision frequency is not able to derive the correct
Prandtl number, i.e. the ratio of thermal conductivity and viscosity [2].

The aim of this paper is twofold. First we show that a velocity-dependent collision frequency may
lead to the correct Prandtl number. We assume a simple power law for the collision frequency
1/7

v=_C"

and show that o = (V21 — 1)/2 = 1.7913 will lead to the Prandtl number Pr = 12

m
Our second aim is to compare the Chapman-Enskog method with Grad’s moment method. We

use both methods for the calculation of the Prandtl number and show that the results of both
agree, if the Grad method is based on a large number of moments.

2 Phase density and Boltzmann equation

The state of a mon-atomic ideal gas is completely described if the phase density f(z;,t,¢;) is
known[2]. f is the phase density such that fdc gives the number density of atoms with velocity
in (¢, ¢; + de;) at place z; and time t.

The macroscopic quantities density o, velocity v; and temperature T of the gas are given by
moments of the phase density, viz.

B B ' 3k, [m \2
g_/mfdc , gvz_/mczfdc , Q‘S_ﬁQET_/§(C“_Uz) fdce (1)
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where m is the mass of one particle, k£ is Boltzmann’s constant and g¢ denotes the density of
internal energy. The entropy of the gas is given by

08 = —k/flnfdc.

For later use we define arbitrary moments of the phase density by

u%wﬁzi/mcwacb- C,. fde @)

with C; = ¢; — v; as the peculiar velocity. Only 13 of this moments have a macroscopic inter-

pretation, namely
U =0 , u, =0 u? = 20 u?”> =Da) o uZ? = 2¢;

with the pressure deviator p(;;y and the heat flux ¢;.

The phase density f (2,1, ¢;) is governed by the Boltzmann equation [2],

gf + cZ =8 = / M= ff') ogsin 8dOdede, . (3)

The collision term on the right hand side has the following four properties [2]

i.) It guarantees the conservation of mass, momentum and energy, which may be written as
[mSde=0 , [meSde=[mCiSde=0 , [2*Sde=[2C?Sde=0 (4)

ii.) The production of entropy is always positive (H-Theorem),
—k / In fSde > 0 (5)

iii.) Due to the specific Form of § the phase density in equilibrium is a Maxwellian, i.e.

4 m m

§=0=>f=fu=2 [ 0 exp g )

iv.) The Prandtl number Pr, defined as the ratio of thermal conductivity and viscosity pu, is
close to 15 k - for all colhslon factors o

~Am (7)

3 The BGK equation

Because of its complex non-linearity, the Boltzmann collision term S is difficult to handle.
Therefore one is interested in model equations which are easier to handle than the Boltzmann
equation but which should also have the properties i.) through iv.).

In the literature one finds many collision models but none is as popular as the one due to
Bhatnagar, Gross and Krook [1]. We briefly recall the motivation of the BGK collision term in
Appendix A, here only the result is given.
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The BGK equation reads

of of
E-l-cia—mizsw:_’/(f_fv)v (8)
where
v=v(z;t,C)

is a mean collision frequency, which depends on C}, and f, is a phase density, given by
fy =aexp (—1’02 + %-cz-) .
The coefficients a, I', y; follow from the conservation conditions (4), which now read

Jvm (f=fy)de=0 ,  [vmCi(f-fy)de=0 , [vZ2C*(f-fy)de=0. (9)

Note, that in general f, is not a Maxwellian. From (9) and (1) follows that f, is a Maxwellian
only if v does not dependent on the peculiar velocity C;.

It should be emphasized that - because of the conditions (9) - the BGK equation (8) is a non-
linear integro-differential equation, just like the Boltzmann equation. So one will not expect
analytical solutions. But as we will show, the standard procedures of Chapman-Enskog and
Grad are much easier to perform for the BGK equation thanfor the Boltzmann equation.

We proceed to discuss the properties of the BGK model which we should like to be the same
ones as those of the Boltzmann equation.

i.) The conservation of mass, momentum and energy is ensured by the proper choice of a, ', y;
according to (9)

ii.) Since, with (9),

k/ln f4Syde :k/ (ln a—1c + %-cl-) Syde =0

we may write the entropy production as
—k/ln fSyde = —k/ln f&,dc—l—k/ln fySyde
_ f
=k l/lnf—(f—fv)dcgo,

~

the H-theorem is fulfilled.

iii.) In thermodynamic equilibrium (characterized by the subscript ) the BGK collision term
must vanish

Sp=0= —v(fiz - fyr) =0,

i.e. in equilibrium both phase densities are equal, fjz = f, 5. Moreover both functions
must have the same moments. Since the first five moments of f define density, velocity
and temperature we have to conclude, that both functions are Maxwellians in equilibrium

fig=HEe=rIu.
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iv.) The calculation of the Prandtl number will be performed in the remainder of the paper.
But one may conjecture sees easily that the extension of the ordinary BGK model to the
case where v is a function of C' offers an additional degree of freedom which may be used
to adjust both, viscosity and thermal conductivity, to their measured values.

In summary we conclude, that the BGK model with a velocity-dependent collision frequency
may be formulated so as to have the properties i.)-iv.) just like the Boltzmann equation. Thus
it may be a good substitute for the Boltzmann equation. What remains to be done is an explicit
demonstration of the conjecture issued in item iv.).

For explicit calculations one has to know the collision frequency as a function of C. For the
calculations in the next sections we have chosen the simplest possible dependence of v on velocity,
namely a polynominal dependence,

v=_CC% with¢(=p90-h(T), a>0. (10)

The choice of a positive a reflects our expectation, that the collision frequency should increase
with the speed of the particle; the linear dependence on g follows from (A.1); the function A (T')
must be fitted to measurements of the thermal conductivity.

We restrict ourselves to processes close to equilibrium. Then f, will be close to a Maxwellian
and we may expand as

fyv = fur (1+&+ﬁ/202—f02> ;
@, 4, [ follow from (9) as

a+5A" a4+ 3A°T?

[ a+2
Gi= —up
i = Sl
U|E
f_m (A““ Aa)
o \ a2 T o
KT \ upf?  ufy

where we have introduced the abbreviations

ro__ r r
A"=u — Ui,

u”, u*+? and u? are moments (2) of the phase density f; we must know f before we are able to
determine them.
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For use in subsequent sections we present some moments of f, as functions of u®, u®*? and ug,

Arta _ o [T Aot2 r—2\ A®
Iy |E 5 ua+2 o 9 u
| =

2T 7 I'(2trt
T-I-oz _ 2 et
Uiy = ( m > F(L) uz ’ (11)
r4+a
Uiy = 0

4 Chapman-Enskog method

We proceed by calculating the phase density f from (8) by means of the Chapman-Enskog
method [2]. In case of the BGK model the Chapman-Enskog method turns out to be very
simple: We insert the Maxwell phase density on the right hand side of (8) and eliminate all time
derivatives by means of the Kuler equations for mon-atomic gases,

100kT r3\"
it o2 —g g l%ml g (—) = 0. (12)

oz, 0
After some rearrangement of the resulting equation we find for the phase density
m Ov; C;C; 19T ([ m 5\ C;
A Ty (LGN
¢ kT oz C T 0x; \2kT 2)C
Now it is an easy task to calculate the pressure deviator p;;y and the heat flux vector ¢;. Of

course, we rederive the laws of Navier-Stokes and Fourier with explicit expressions for viscosity
i and thermal conductivity &, viz.

piy = 2 (%T)% (*52) vy
=T\ ) TG
20
ko (2kT> T10 - 20+ T(552%) 9T
= Tm\Um 8 (%) 0z
K

As expected, the Prandtl number depends on the power of C' in the collision frequency

. 15k 10— 2
prof_15k10-20+a% (13)
7 4 m 15-3«

Since we are interested in positive values of a only, we find one value of a for each measured
Prandtl number. a = 0 gives Pr = 5% while o = % (—1 + \/21) = 1.7913 provides the desired

2
Prandtl number Pr = 14—5:1
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5 Grad Method

5.1 Moment equations

In Grad’s moment method the Boltzmann equation is replaced by moment equations [4]. Crucial
is the choice of the moments on which the theory is based. Here we assume that the state of
the gas is sufficiently well described by the knowledge of the moments

with n = 0,1,..., N. Here N is a number, which takes into account isotropic deviations from
the Maxwell distribution. Its value will be discussed in the sequel.

With this choice of moments we imply that deviations from isotropy are small; if we were
interested in highly anisotropic processes we should have to consider moments u?ﬁl y =

fmCQ”C'(il---Cim)de with m=0,1,..., M; M > 2 also.

The moment equations follow by multiplication of the BGK equation (8) with mC?", mC**C;,
mC’Q”CUCj) and subsequent integration over velocity space.

With the assumption (10) for the collision frequency we obtain

1 apkl 8U avk avk
oyl YU 1 9 2n 20V o on _ (uQ”"‘a _ 2n+a>
" 0 0z + Oxy, + 0z, Dz}, ¢ Uy
a2 2 LOPik 2nug£_zlapkz Ouly
0 0xy, R %acl 8:6% 5
2n—2 OVk 2n OVk am OV o onta 2n+a)
PP oy T By T By O (v h (15)
2
~2n 9 2n—2 1 8pkl 2N 1 ap])k au('g)k
Uy =AMk S m 2ug; 3 p)
g 0Ty g 0Tk 5 Tk P
8’Uk U') Uk
2n—=2 Y "k 271_ J 2_n_ —— 2?1'-}-(1
gy, T g, T Uigs, = i
If we choose n = 0,1 in the scalar equation (15); we obtain the balance laws of mass and energy,
dvy, dq vy,
- 2 Tk 1
otem =0, et mm=—puy_ (16)

n (15) all time derivatives of the macroscopic velocity v; were eliminated by means of the
balance of momentum,

Opir _
oz

which has therefore to replace equation (15)y with n = 0.

(17)

ov; —

5.2 Closure Problem

The set of moment equations (15) is not a system of field equations for the moments (14) because
it contains additional moments, such as um)k, (mkl,u2”+",uf”+o‘,u2?+°‘. Constitutive equa-

tions are needed for these additional quantities. The Grad method proceeds on the assumption



H.Struchtrup: The BGK-model with velocity-dependent collision frequency 7

that the phase density is a function of the moments (14); thus the constitutive equations will
be of the form

f;;)k, f )kl,um"’a,u?”'}'a,u?g;ﬂ,. —f( n g f”,u?fj);nzo,]...N). (18)

The phase density is assumed to be a power series of C; of the following form

f=rfu (1 + Z ARC2E Z AFC2RC 4 Z M CPFCiC; ) (19)

k=0 k=0

The coefficients A¥, Ak )\é“ y follow from the requirements (14):

M= VT Z (%T> kAzn,withAkn:r(nJrkJr;);

n+k+1
Akzg\fz (m) ugn,withskn:r<n+k+g>; (20)

2kT

15\/_ m \n+k+2 7
k = 2n . o
K ;) Happ) il with G =T (n R 5) '

With (19, 20) we are able to compute all constitutive equations (18). Especially we obtain

NIy a2 )ag () E A
’ _g ( i ) (2kT> !
n=2
N P 5 m \n—5%
uP = J 2Yyp-t 2 2n
" _%l (2 TR 2) 80 () ot 21)
l P 7 m \n—%
_ 2 on
wij) = kZ_:OF(f“ 5) Ci (5m) utty.

5.3 Maxwellian iteration
We do not want to set up the complete system of moment equations. Rather we proceed by an
simple iteration procedure, known as Maxwellian iteration [7, 6].

The first step is to introduce the equilibrium values of the moments (calculated by Maxwell’s
phase density fps) on the lefthand side of the moment equations. The moment equations thus
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reduce to the Euler equations (12) and

L]
T .
n|ln— ufﬁ:OZ_C<A2n+a_A|2n+a> 7 n=23..., N
05 ’
TL 2n+2 1 8T _ ( 2n+a 2n+a) 22
o ¢ (o " , n=1,2,...,N (22)
2n + 5 2n+42 8 2n+o _
2—— B U 37“) C () , n=0,1,...,N
Now we introduce (21, 11) in the right-hand sides of (22). This gives 3N linear equations for
the non-conserved moments u?*, n=2,3,... ,N; u?*, n=1,2,...,N; U?Z;-a, n=20,1,...,N.
We obtain
A2s — u2s _ u|2]§ =0,
) ko 26T\ 7 <n,_, T(n+3)or
uzs - T (—) Zesn 5 ) (23)
mC m n=1 F(E) 8;62

N

=301 (n-l—k-l— +7)c,;nl.

k=0

With the computation of the moments the first step of the Maxwellian iteration is finished. The
next step of the iteration is to insert the moments (23) on the left hand side of the moment
equations (15) and to solve for the moments on the right hand side again.

We stop the iteration with the first step and calculate those moments wich have a physical
interpretation, namely ¢; = %uf and p;jy = u?m. Again we find the laws of Fourier and Navier-

Stokes,
ko (2N TP~ T(n+3)or
==t (%) 2.0 rg 97

o (2KT\'"F S )3”<
20
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Now thermal conductivity and viscosity do not only depend on the exponent « in the collision
frequency v but also on the number N of moments. For the Prandtl number we find

Pr=— -
T w3 YN s (1)

5.4 Comparison with Chapman-Enskog method

The main difference between the two methods - Grad and Chapman-Enskog - is, that in the
latter one equilibrium values are inserted on the left hand side of the BGK equation first and
afterwards the moments are calculated. In the Grad method one first calculates the moment
equations and inserts equilibrium afterwards.

The ratio of the Prandtl numbers (13, 24) gives

ISR SPRR > 7 Ve
T 010 - 200+ a2 EnNﬁ(}}r(”‘l‘%)

In the case & = 0 we have F' (0, N) =1 for all N and the Prandtl numbers obtained from the
Chapman-Enskog and the Grad methods agree.

If o # 0 holds, the Grad method gives the same result as the Chapman-Enskog method only
when the number N is sufficiently big.

Figure 1 shows I’ (o =1, N); F increases with increasing N and reaches the value F' = 1 for
N = 11. Figure 2 shows I’ (o = 1.79129, N). Here, the convergence towards the value F' =1

1 i . ‘ ° Py °

0.98 L

0.96

= 094 *

0.92

0.9

0.88

o
N
N
oQ!
—_
(=)

Figure 1: F (o, N) for « =1 as a function of the number of moments N.

is slower then in the case @ = 1. For N = 11 we find only F ~ 0.96'. We expect that F will
tend to 1 with increasing N. An agreement between both methods is only possible if in the Grad

'Due to accuracy problems in the numerical inversion of the matrices, we cannot present results with N > 11.
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Figure 2: F (o, N) for a = 1.79129 as a function of the number of moments N.

method a large number N of moments is taken into account. Grad’s well known 13 moment
distribution [6],

f=fu (1 4 p<;~’"> (5) ey - x (7) ¢ (1 - %%c?))

gives Pr = %% for all values of a.

Appendix A: Motivation of BGK equation

For motivation of the BGK equation we simplify the Boltzmann collision term in three steps [5].

Step 1: Because of the collisions the phase density will tend to a phase density f, for which the
Boltzmann collision term vanishes. Thus In f, must be a linear combination of the collisional
invariants m, mc;, %(32,

fy=aexp (=I'c® + y¢;) . (25)

The phase densities f’f"! in the collision term (3) refer to the velocities after the collision - they
may be replaced by f I,

S —>§7 = / (ﬂﬂl - ffl) ogsin 6dfdedce,

Step 2: Since In f, is a linear combination of the collisional invariants we may replace ﬂﬂ1 by

oY AR
3\7 —>§,Y = fw/fwlagsin 0dfdsdey — f/flcrg sin fdfdedcy

Step 3: The difference between the two integrals may be neglected. This last step leads to the
BGK collision term (8)

Sy= Sy =-v(f - 1)
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and we are able to identify the collision frequency as
v(z,t,Ci) = /fvlagsin fdfdsdc; . (A.1)

Since ¢ and g depend on C this is true also for v. This function is evaluated for the case of hard
spheres and equilibrium in [3]. One should not rely on (A.1) as the exact value for v because all
the assumptions will lead to errors. It is possible, however, to choose the function v so as to fit
thermal conductivity and viscosity (or Prandtl number) to measurements.
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