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In extension of the ideas of Anderson and Spiegel (1972) the radiative transfer equation is
replaced by moment equations for the moments

AA1 A2 } } } AN
r =| (p0

RL)r+1&N pA1pA2 } } } pANf dP,

r=0, 1, ..., R. Here pA is the photon 4-momentum, cp0
RL is the photon energy in the rest

Lorentz frame and f is the photon phase density. From these follow moment equations for the
projected symmetric trace free moments introduced by Thorne (1981). The required closure
of the equations is achieved by use of a series expansion of the phase density which is
motivated by the entropy maximum principle. This procedure provides a coupling of the
moment equations by means of matrices of mean absorption and scattering coefficients. It is
shown that the extension from r=1 (Anderson and Spiegel, 1972; Thorne, 1981; Schweizer,
1988) to r=0, 1, ..., R gives reasonable results: In the limit of local radiative equilibrium
(LRE) the well-known Rosseland mean of the absorption coefficient is recovered. For a simple
non-LRE experiment, the homogeneous compression and relaxation of radiation, the radiative
transfer equation, and the moment equations are solved. The comparison of the results in the
case of pure bremsstrahlung (free�free) absorption shows an excellent agreement for R�6.
� 1997 Academic Press

1. INTRODUCTION

The goal of radiation thermodynamics is the determination of the transfer of
radiative energy and momentum as well as of the interchange of energy and
momentum between radiation and matter.

In principle the problem is solved when the radiative transfer equation with all
interaction terms is known. Of interest are the thermodynamic quantities energy,
momentum, energy and momentum interchange, entropy, etc. They may be cal-
culated from the photon phase density or the intensity of radiation and the spectral
absorption and scattering coefficients by integration over all photon frequencies
and directions. The photon phase density follows as the solution of the radiative
transfer equation which is��in general��not analytically solvable.
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An alternative approach to the problem is the method of moments: One derives
moment equations from the radiative transfer equation and obtains an infinite set
of partial differential equations which may replace the radiative transfer equation.
Since it makes no sense to deal with an infinite number of equations one has
to restrict one's attention to a limited number of moments. The question is how
many and which moments are needed for a satisfactory description of radiative
processes.

The restriction to a limited number of equations leads to another question: The
finite set of moment equations contains more unknowns than variables. Therefore
one needs constitutive equations to close the system. How can these be found?

There exists a great number of theories with different answers for both questions.
Most authors consider only the moment equations for energy and momentum and
close them by several methods. This choice gives excellent results in the case of local
radiative equilibrium (LRE) where the photon phase density is a local Planck func-
tion, see [4, 5, 9]. Similar theories for non-LRE, e.g. [2, 10, 11, 12], however, do
not provide a proper description of radiative processes because the variety of devia-
tions from the equilibrium state cannot be described by the two quantities energy
and momentum alone.

For this reason Anderson and Spiegel [1] develop a theory, in covariant for-
mulation, which takes an arbitrary number of moments into account but they
provide no method for the closure of their equations. This was done later by
Thorne [22] and Schweizer [20] who took great care in the calculation of mean
absorption and scattering coefficients. This theory does not seem altogether satisfac-
tory because Anderson and Spiegel's choice of moments reflects the anisotropy of
the non-equilibrium phase density only but not its spectral deviation from Planck's
equilibrium phase density.

Therefore in the present paper we choose a more extended set of moments as
variables. The equations are closed by means of an series representation of the
phase density which is motivated by the entropy maximum principle of extended
thermodynamics [7, 15]. Thus the phase density is a series in spherical harmonics,
allowing for anisotropy, and powers of the frequency, allowing for spectral devia-
tions. The expansion coefficients are related to the moments.

We obtain a set of partial differential equations which are coupled by matrices of
mean absorption and scattering coefficients. In the limit of LRE these equations
reproduce the well-known Rosseland mean of the absorption coefficient. By a
simple experiment, the homogeneous compression of radiation, we show that the
equations provide excellent results in non-LRE too. We obtain them by solving the
radiative transfer equation as well as the moment equations and compare the
results. A discussion of the equations for inhomogeneous problems will be
published later.

The equations are presented in covariant form using the formalism of projected
symmetric trace free (PSTF) moments which was introduced by Thorne [22]. We
shall also consider the case of non-relativistic matter velocities in the laboratory
frame and of matter at rest.
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We are not interested here in discussing the importance of the various absorption
and scattering effects at different temperatures. For this we refer, again, to the paper
of Thorne [22]. We shall formulate the theory for arbitrary absorption and scatter-
ing coefficients; in the examples, however we will consider only bremsstrahlung
(free-free) absorption and Thomson scattering at electrons.

2. EQUATIONS FOR MATTER

We describe the matter background as a one component gas in local thermal
equilibrium (LTE) i.e. the phase density of the gas is a local Maxwellian. For
reasons of simplicity we assume that all effects of viscosity and heat transfer in the
gas can be neglected. For more precise theories the interested reader is referred to
the literature [8, 15, 16].

We denote the 4-velocity of the matter by UA. For an observer at rest in the
accompanying rest Lorentz frame (RLF) we have

UA=[c, 0, 0, 0]A; (2.1)

where c is the velocity flight. We choose the Lorentz metric as [1, &1, &1, &1] so
that

UAUA=c2. (2.2)

The observer in RLF measures the particle number density nRL . The conservation
of particle number density reads

(nRL UA); A=0, (2.3)

where the semicolon denotes covariant differentiation.
The covariant balance of energy momentum T AB reads

T AB
; B=&PA, (2.4)

where the 4-vector &PA accounts for the exchange of energy and momentum with
radiation. The energy momentum tensor T AB may be decomposed as [16]

T AB==RL
1
c2 UAU B& p 2AB, (2.5)

where

=RL=nRLmc2+nRL u (2.6)
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is the energy density in RLF, m is the particle rest mass and u is the thermal energy
density. Moreover p is the pressure in RLF and the spatial projector is defined as

2AB= gAB&
1
c2 UAUB

with

2ABUB=0, 2AB2BC=2A
C , 2A

A=3 (2.7)

where gAB denotes the metric tensor.
Supplemented by equations of state for p= p(nRL , T ) and u=u(nRL , T ) Eqs.

(2.3, 2.4) provide five equations for the five variables temperature T, particle
number density nRL and velocity UA. The temperature is a scalar.

The production vector PA must be determined from radiation thermodynamics.

3. MOMENTS AND MOMENT EQUATIONS

3.1. Photons

We describe radiation in the photon picture. The photon 4-momentum of
photons with frequency | and direction vector ni is given by

pA=
�|
c

[1, ni]A . (3.1)

�=h�2? is Planck's constant, �| is the photon energy and (�|�c) ni is the photon
momentum. We have

pApA=0. (3.2)

For the definition of the PSTF moments we need a decomposition of pA into one
part parallel to UA and one part perpendicular to UA [22],

pA= p0
RL \1

c
U A+LA+ with LAUA=0, p0

RL=
pAUA

c
. (3.3)

Because of

pA
RL= p0

RL[1, Li
RL]A=

�|RL

c
[1, ni

RL]A , (3.4)

cp0
LR is the photon energy in RLF and LA is the covariant generalization of the

photon direction vector in RLF with

LALA=&1, pA 2A
C= p0

RL LC (3.5)
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In this paper we consider only unpolarized radiation so that we do not need any
other quantities for the description of radiation.

In the following, for simplicity, we will denote frequency and direction vector in
RLF simply by |, ni.

3.2. Photon Phase Density

The photon phase density f (xA, pi) is defined such that

f (xA, pi) dX dP (3.6)

gives the number of photons in the element dX dP=- &g p0 d 3x dP [6, 13]. Due
to this definition f is an invariant scalar. dP denotes the invariant momentum space
element

dP=
- &g

p0

d 3p with dPRL=\�

c+
2

| d| d0,

and

d0=sin � d� d.. (3.7)

The energy momentum tensor of radiation is given by

T AB=c | pApBf dP. (3.8)

Later we will need the entropy 4-vector, given by [8, 18]

SA=&kBc | pA _ f ln
f
y

&( y+ f ) ln \1+
f
y+& dP with y=

2
(2?�)3 , (3.9)

kB is Boltzmann's constant.

3.3. Radiative Transfer Equations

The radiative transfer equation for f is equal to the covariant Boltzmann equa-
tion, viz. [6, 13]

pBf ; B&1 k
BC pBpC �f

�pk=
p0

RL

c
S=

p0
RL

c
(SA�E+SSc) (3.10)

where 1 A
BC are Christoffel symbols. S denotes the invariant interaction term which

is composed of one part SA�E describing absorption and emission processes and of
one part SSc describing scattering processes. We will evaluate S always in the RLF
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so it is sufficient to give its form only in terms of RLF quantities. For absorption�
emission processes we have, since the gas is in LTE [4]

SA�E=&}(|)( f & f |E). (3.11)

f |E denotes the equilibrium phase density

f |E=
y

exp 7 |E&1
, with 7 |E=

cp0
RL

kB T
=

�|
kBT

(3.12)

and } is the effective spectral absorption coefficient. In the case of pure
bremsstrahlung absorption we have [3, 4]

}ff=Dff
1&exp(&7 |E)

73
|E

, Dff=*nel \kBT
� +

&3

B(Z, n). (3.13)

The constant B(Z, n) depends on atomic constants, * is the density of matter and
nel is the number density of free electrons.

The interaction term for anisotropic scattering reads [22]

SSc=&�(|) _ f (|, ni)&
1

4? | f (|, n$ i) d0$

&
3

16?
n(in j) | n$(in$j)f (|, n$ i) d0$& (3.14)

with the scattering coefficient �. The indices in angular brackets denote asymmetric
trace-free tensor in 3-space (see below). For simplicity we may restrict the attention
to isotropic scattering with

SSc=&�(|) _ f (|, ni)&
1

4? | f (|, n$ i) d0$& . (3.15)

In the case of Thomson scattering at electrons the scattering coefficient is inde-
pendent of frequency,

�T=nel const. (3.16)

3.4. Moments

3.4.1. Unprojected moments. Extending the ideas of Anderson and Spiegel [1]
we define unprojected moments as

AA1A2 } } } AN
r =| ( p0

RL)r+1&N pA1pA2 } } } pANf dP, r, N # N (3.17)
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These are symmetric trace-free 4-tensors with, see (3.2, 3.3),

AA1A2 } } } AN&2AN&1
r AN&1

=0, AA1A2 } } } AN
r

1
c

UAN=AA1A2 } } } AN&1
r . (3.18)

The energy momentum tensor (3.8) is related to these moments by

T AB=cAAB
1 . (3.19)

Because of (3.18)2 it is contained in the moments AA1A2 } } } AN
1 (N�2).

Note that Anderson and Spiegel choose only the moments with the index r=1
while they left N arbitrary. The extension to other values of r is the main contribu-
tion of this paper.

3.4.2. PS moments. Extending the ideas of Thorne [22] we define projected
symmetric (PS) moments as

MA1 } } } An
r =| ( p0

RL)r+1 LA1 } } } LAnf dP, r, n # N. (3.20)

The M A1 } } } An
r have the following properties, see (3.3, 3.5):

M A1 } } } An
r UAn=0, M A1 } } } An&2 An&1

r An&1
=&M A1 } } } An&2

r (3.21)

Equation (3.21)1 shows that the M A1 } } } An
r have no components in direction of UA;

they are projected.
By means of (3.3) we may decompose the moments (3.17) as

AA1A2 } } } AN
r = :

N

k=0
\N

k +
1

cN&k M (A1 } } } Ak
r U Ak+1 } } } UAn), (3.22)

where the brackets indicate symmetrization. On the other hand we may compute
the PS moments from the unprojected moments with (3.5)2 ,

MB1 } } } Bk
r =AA1 } } } AN

r 2A1
B1 } } } 2Ak

Bk
1

cN&k UAk+1
} } } UAN . (3.23)

3.4.3. PSTF moments. Because of (3.21)2 only the trace-free parts of the
MA1 } } } An

r are independent, so it suffices to consider the trace-free parts only which
we denote by

M (A1 } } } An)
r =| ( p0

RL)r+1 L(A1 } } } LAn)f dP, r, n # N. (3.24)

The M (A1 } } } An)
r have the properties

M (A1 } } } An)
r UAn=0, M (A1 } } } An&1

r An&1)=0. (3.25)
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In RLF they have spatial components only which we denote as

u(i1 } } } in)
r =(M (i1 } } } in)

r )RL=\�

c+
r+3

| |r+2n(i1 } } } nin)f d| d0. (3.26)

The densities of radiative energy and momentum in RLF are given by e=cu1 and
pi=ui

1 . u0 is the photon number density.
The angular brackets indicate a completely projected symmetric trace-free tensor.

A PSTF tensor of rank n is related to a PS tensor by

M (A1 } } } An)
r =M A1 } } } An

r + :
&n�2&

k=1

1
>k&1

j=0 (2(n& j)&1)

_(2A1A2 } } } 2A2k&1A2kM A2k+1 } } } An
r + } } } +(Pnk terms)) (3.27)

where

"n
2"={

n
2
n&1

2

n even

n uneven.
(3.28)

The sum in brackets extends over all

Pnk=
n !

(n&2k) ! 2kk !
(3.29)

different permutations of the indices. The first few tensors M (A1 } } } An)
r read

M (A)
r =M A

r

M (AB)
r =M AB

r + 1
3 2ABMr

M (ABC)
r =M ABC

r + 1
5(2ABM C

r +2ACM B
r +2BCM A

r )

M (ABCD)
r =M ABCD

r + 1
7 (2ABM CD

r +2ACM BD
r +2ADM BC

r

+2BCM AD
r +2BDM AC

r +2CDM AB
r )

+ 1
35 (2AB 2CD+2AC 2BD+2AD 2BC) Mr .

The projected moments (3.20) are related to the PSTF moments due to

M A1 } } } An
r =M (A1 } } } An)

r + :
&n�2&

k=1

(&1)k

>k&1
j=0 (2(n&k& j)+1)

_(2A1A2 } } } 2A2k&1A2kM (A2k+1 } } } An)
r + } } } +(Pnk terms)). (3.31)
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With (3.22, 3.31) it is possible to represent the moments AA1A2 } } } AN
r through the

PSTF moments M (A1 } } } An)
r . On the other hand the PSTF moments may be com-

puted from the AA1A2 } } } AN
r by use of the relations (3.23, 3.27).

From the formulae above one derives two relations which will be needed later,
viz.

M (B1 } } } Bn) C
r =M (B1 } } } BnC)

r &
n

2n+1
M ((B1 } } } Bn&1)

r 2Bn) C (3.32)

M (B1 } } } Bn) CD
r =M (B1 } } } BnCD)

r &
n

2n+3
(M (D(B1 } } } Bn&1)

r 2Bn) C

+M (C(B1 } } } Bn&1) D
r 2Bn) D&

1
2n+3

M (B1 } } } Bn)
r 2CD

+
n(n&1)

(2n+1)(2n&1)
2C(B1M (B2 } } } Bn&1)

r 2Bn) D. (3.33)

Note that the Eqs. (3.31, 3.27, 3.32, 3.33) are valid for all projected symmetric
tensors.

3.5. Moment Equations

3.5.1. Unprojected moments. Multiplication of the radiative transfer Eq. (3.10)
with

( p0
RL)r&NpA1pA2 } } } pAN

- &g
p0

and subsequent integration over d 3p gives the equations for the unprojected
moments AA1A2 } } } AN

r . After some partial integrations and with use of the identities

pA
; B=1 a

BC pC �pA

�pa , (ln - &g); A=1 B
BA

we obtain

AA1A2 } } } ANB
r ;B+(N&r) AA1A2 } } } ANB

r

1
c

UB;D=PA1A2 } } } AN
r . (3.34)

The production tensor PA1A2 } } } AN
r is defined by

PA1 A2 } } } AN
r =| ( p0

RL)r&N pA1pA2 } } } pAN
p0

RL

c
S dP. (3.35)
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3.5.2. PSTF moments The compact Eqs. (3.34) are not well suited for calcula-
tion. Here one needs the equations for the PSTF moments. Multiplication of (3.34)
for N=n with 2A1

(B1 } } } 2An
Bn) yields after some rearrangement

DM(B1 } } } Bn)
r +{CM(B1 } } } Bn)C

r

+
1
c

DUD {(n&r&1) M(B1 } } } Bn) D
r +ngD(B1M (B2 } } } Bn))

r +n
1
c

U (B1M(B2 } } } Bn)) D
r =

+
1
c

{CUD {(n&r) M (B1 } } } Bn) CD
r +M (B1 } } } Bn)

r gCD+ngD(B1M (B2 } } } Bn)) C
r

+n
1
c

U (B1M (B2 } } } Bn))CD==P(B1 } } } Bn)
r . (3.36)

The production tensor is defined as

P(B1 } } } Bn)
r =2A1

(B1 } } } 2An
Bn)PA1 } } } An

r

=
1
c | ( p0

RL) r+1 L(B1 } } } LBn)S dP. (3.37)

The abbreviations D and {C stand for the covariant generalizations of the partial
derivatives in RLF with respect to time and space, respectively,

D9=
1
c

UC9;C , {C9=2D
C 9 ;D

so that

9;C=
1
c

UC D9+{C 9. (3.38)

Equation (3.36) is not formulated for the completely trace-free moments. Here one
has to use the identities (3.32, 3.33). We do not make this insertion at this stage.
For the case r=1 the Eqs. (3.36) were written for the first time by Thorne [22].
The Eqs. (3.36) for n=0, 1, ..., N are equivalent to (3.34).

4. CONSTITUTIVE EQUATIONS

4.1. Variables and Closure Problem

We assume that the knowledge of the moments

M (A1 } } } An)
r , r=0, 1, ..., R; n=0, 1, ..., N
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or

AA1 } } } AN
r , r=0, 1, ..., R (4.1)

describes a given radiative process with sufficient accuracy. For the moment R, N
are arbitrary numbers. Of course we have to answer the question which values of
R, N must be chosen for a radiative process. At the end of the paper we shall give
some criteria for the determination of R. A subsequent paper [21] will discuss the
number N.

The moments (4.1) must be determined from the Eqs. (3.36) with r=0, ..., R;
n=0, ..., N. These equations do not form a closed set for the variables M (A1 } } } An)

r

because they contain the additional moments M (A1 } } } ANB)
r , M (A1 } } } ANBC)

r and the
productions P (A1 } } } An)

r . The closure requires constitutive equations which relate
these quantities to the variables (4.1). We choose constitutive equations which
depend on the variables (4.1)

P (A1 } } } An)
r =P (A1 } } } An)

r (M (B1 } } } Bm)
s , s=0, ..., R; m=0, ..., N ),

M (A1 } } } AN B)
r =M (A1 } } } ANB)

r (M (B1 } } } Bm)
s , s=0, ...,R; m=0, ...,N), (4.2)

M (A1 } } } AN BC)
r =M (A1 } } } ANBC)

r (M (B1 } } } Bm)
s , s=0, ..., R; m=0, ..., N ).

Note that gradients or time derivatives are absent from the list of variables. This
choice of variables is motivated by the theory of Extended Thermodynamics of
Mu� ller and Ruggeri [15]. Indeed, we will use the entropy maximum principle [7]
for closure which is equivalent to Extended Thermodynamics. Thus all features of
Extended Thermodynamics will be contained in our theory. In particular the
resulting field equations will be of symmetric hyperbolic type. This guarantees well-
posedness of Cauchy problems and finite speeds of disturbances.

4.2. Entropy Maximum Principle

The definitions (3.20, 3.37) show that we will find the required constitutive
Eqs. (4.2) if the photon phase density f depends on space-time only through the
variables,

f = f (M (B1 } } } Bm)
s (xA), pi). (4.3)

The entropy maximum principle states: The phase density (4.3) follows by maxi-
mization of the entropy density in RLF with respect to f under the constraint of
prescribed values of the variables M (B1 } } } Bm)

s . The entropy density in RLF is given
by

hLR=
1
c2 SAUA=&kB | p0

RL _f ln
f
y

&( y+ f ) ln \1+
f
y+& dP. (4.4)

121RADIATIVE TRANSFER: EXTENDED MOMENT METHOD



File: 595J 568412 . By:DS . Date:22:07:07 . Time:06:39 LOP8M. V8.0. Page 01:01
Codes: 2703 Signs: 1382 . Length: 46 pic 0 pts, 194 mm

We take care of the constraints by Lagrange multipliers 4r
(A1 } } } An) and maximize

&kB | p0
RL _ f ln

f
y

&( y+ f ) ln \1+
f
y+& dP

& :
r, n

4r
(A1 } } } An) _| ( p0

RL)r+1 L(A1 } } } LAn)f dP&M (A1 } } } An)
r & (4.5)

without constraints. The result reads

f =
y

exp 7&1
, with 7=

1
kB

:
r, n

4r
(A1 } } } An)(p0

RL)r L(A1 } } } LAn) (4.6)

The Lagrange multipliers are PSTF tensors too and must be calculated from the
definition (3.20) of the moments.

4.3. Expansion of the Phase Density

Unfortunately it is impossible to perform the required integrals over the phase
density (4.6). For this reason we will expand it around equilibrium. Comparison
with the equilibrium phase density (3.12) shows that we have for the Lagrange
multipliers in equilibrium

:
r, n

4r
(A1 } } } An) |E={

c
T

, r=1, n=0
(4.7)

0, else.

We write

1
kB

4r
(A1 } } } An)=

c
kB T

$r1 $n0+*r
(A1 } } } An) (4.8)

and assume that the non-equilibrium parts *r
(A1 } } } An) of the Lagrange multipliers

are small such that

f r f |E+
df |E

d7 |E
:
r, n

*r
(A1 } } } An)( p0

RL)r L(A1 } } } LAn). (4.9)

The phase density is a series in the powers ( p0
RL)r and the spherical harmonics

L(A1 } } } LAn). The powers reflect the spectral deviation from the equilibrium phase
density while the spherical harmonics account for anisotropy. If the deviation from
equilibrium is too big, this expansion is not appropriate. For instance it will be
inappropriate for a sunbeam travelling into the earth' atmosphere. This problem
will be discussed in [21].
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4.4. Moments and Lagrange-Multipliers

The calculation of the Lagrange multipliers and the constitutive equations is best
performed in RLF. The RLF Lagrange multipliers follow from (3.26)

*t
(i1i2 } } } in)=&

>n
j=0 (2j+1)

n !
:
r

C&1
tr

ur
(i1 i2 } } } in)&ur

(i1 i2 } } } in) |E

4?y(kBT�c)r+t+3 , (4.10)

where we have introduced the equilibrium values of the moments

ur | E(T )=Mr | E(T )=4?y \kBT
c +

r+3

1(r+3) `(r+3),
(4.11)

u(i1 } } } in)
r |E(T )=0,

and a matrix defined as

Crs=C(r, s), r, s=0, ..., R
with

C(r, s)=1(s+r+3) `(s+r+2). (4.12)

1(x) denotes the Gamma function and `(x) is Riemann's Zeta function.

4.5. Constitutive Equations for Moments

With (4.9, 4.10) we have found the phase density (4.3) and are able to calculate
the constitutive equations. In RLF we obtain in general

u(i1 } } } iN+m)
r =0, m>0. (4.13)

For the moments (4.2)2,3 follows

M (A1 } } } AN B)
r =0, M (A1 } } } ANBD)

r =0. (4.14)

The PSTF moments with tensorial rank >N vanish. Since the number N reflects the
anisotropy of the photon field, N must be chosen big enough, so that Eqs. (4.14) are
approximately valid, see [21].

4.6. Constitutive Equations for Productions

For the productions (3.37) we obtain

Pr=&:
s

1
c

3rs(Ms&Ms | E), (4.15)

P (A1 } } } An)
r =&:

s

1
c

3� rsM (A1 } } } An)
s , n{2 (4.16)

P (A1A2)
r =&:

s

1
c \

9
10

3� rs+
1

10
3rs+ M (A1A2)

s . (4.17)
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In the case of isotropic scattering (3.15) the production (4.17) fits into the scheme
(4.16),

P (A1A2)
r =&:

s

1
c

3� rsM (A1A2)
s . (4.18)

3rs denotes the matrix of mean absorption coefficients defined as

3rs(*, T )=\kBT
c +

r&s

:
t

C&1
ts | }(7)

e7

(e7&1)2 7t+r+2 d7 (4.19)

and the matrix of mean absorption and scattering coefficients 3� rs is defined as

3� rs(*, T )=3rs(*, T )+\kBT
c +

r&s

:
t

C&1
ts | �(7)

e7

(e7&1)2 7t+r+2 d7. (4.20)

Only if scattering is negligible, is it possible to find an easy form for the productions
(3.35), viz.

P A1A2 } } } AN
r =&:

s

1
c

3rs(AA1A2 } } } AN
s &AA1A2 } } } AN

s |E). (4.21)

4.7. Bremsstrahlung Absorption and Thomson Scattering

In the case of bremsstrahlung absorption the matrix of mean absorption coef-
ficients comes out as

3 ff
rs=Dff \kBT

c +
r&s

:
t

1(t+r) `(t+r) C&1
ts . (4.22)

Because of `(0)=� the matrix 3 ff
rs becomes indeterminate for r=t=0. This

problem can be avoided, if the variables with index r=0 are deleted from the list
of variables.

We show why this must be done: The net number rate of photons with 3-momen-
tum pi created by bremsstrahlung processes is given by

dN=c \ p0
RL

c
S+ dP. (4.23)

For the RLF observer this may be written with (3.11, 3.13, 4.9) as

dN=&Dff \kBT
c +

3

\�

c+
r

:
r, n

*r
(i1 } } } in) f |E|r&1n(i1 } } } nin) d| d0. (4.24)

This number must be finite for all frequencies, especially for | � 0. It follows that

*0
(i1i2 } } } in)=0 (4.25)
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must hold for all n. This is tantamount to deleting the moments M (A1 } } } An)
0 from

the list of variables, the index r runs over the values r=1, ..., R only .
In the case Thomson scattering (3.16) the matrix of mean absorption and

scattering coefficients comes out as

3� rs(T )=3rs+�T $rs . (4.26)

5. THE EQUATIONS OF RADIATION THERMODYNAMICS

5.1. Coupling to Matter

With the results of the last section we are able to write down the closed set of
field equations for radiative processes. They follow from (3.36) with (4.15�4.20).
These field equations are coupled to the equations for matter (2.3, 2.4) by the
energy momentum production vector PA which is given by, see (3.19)

PA=cPA
1 =UAP1+cPA

1 =&
1
c

U A :
s

31s(Ms&Ms | E)&:
s

3� 1s M A
s . (5.1)

An additional coupling is due to the occurrence of the temperature and density of
matter in the matrices 3rs , 3� rs and in the equilibrium moments.

The moment equations form a hierarchy of N equations for each index r. The R
hierarchies are coupled through the matrices 3rq , 3� rq on the right hand sides. This
coupling is unusual although not unknown in the kinetic theory of gases [19]. In
the present theory of radiation thermodynamics it is necessary and essential for
good results.

5.2. Matter at Rest

The field equations have their simplest form for matter that moves with
homogeneous speed. The equations for the RLF observer read

�ur

�t
+c

�uk
r

�xk=&:
s

3rs(us&us | E)

�ui
r

�t
+

n
2n+1

c
�ur

�xi+c
�u(ik)

r

�xk =&:
s

3� rsu i
s

�u(i1 i2)
r

�t
+

n
2n+1

c
�u(i1

r

�xi2)+c
�u(i1 i2 k)

r

�xk =&:
s \

9
10

3� rs+
1
10

3rs+ u(i1 i2)
s (5.2)

�u(i1 } } } in)
r

�t
+

n
2n+1

c
�u((i1 } } } in&1)

r

�xin) +c
�u(i1 } } } ink)

r

�xk =&:
s

3� rs u(i1 } } } in)
s

�u(i1 } } } iN)
r

�t
+

N
2N+1

c
�u((i1 } } } iN-1)

r

�xiN) =&:
s

3� rs u(i1 } } } iN)
s .
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5.3. The Limit of Non-Relativistic Velocity

In many cases there exists an observer for whom the velocity of matter is small
compared to the velocity of light. We call this frame laboratory system (LS). We
neglect the effects of gravitation and all terms of order O(v2�c2). Thus we have for
the LS observer

UA=[c, vi], UA=[c, &vi]

D9=
1
c \

�9
�t

+vk
�9
�xk+ , {C9={vk

c
�9
�xk ,

�9
�xi+

1
c2 vi

�9
�t =C

(5.3)

1
c

DUA={0,
&1
c2

�vi

�t =A
, 1

c
{C UD={

0

0i

0j

&
1
c

�vi

�xj=CD

Furthermore this observer measures the vector LA as

LA={vl

c
nl , nk= (5.4)

and finds the following relations between the moments M (A1 } } } An)
r and u(i1 } } } in)

r :

M (i1 } } } in)
r =u(i1 } } } in)

r , M (i1 } } } in) k
r =u(i1 } } } in) k

r ,

M (i1 } } } in) kl
r =u(i1 } } } in) kl

r , M (i1 } } } in) 0
r =u(i1 } } } in) k

r

vk

c
,

(5.5)

M (i1 } } } in) 00
r =O \v2

c2+ .

Consideration of the space components of (3.36) only, i.e., setting Bk=ik yields

�u(ii } } } in)
r

�t
+

�
�xk (u(i1 } } } in)

r vk+cu(i1 } } } in) k
r )+(r&n) u(i1 } } } in) kl

r

�vk

�xl

+n
�v(i1

�xk ui2 } } } in) k
r +

vk

c
�u(i1 } } } in) k

r

�t

+(r+1&n) u(i1 } } } in) k
r

1
c

�vk

�t
+n

1
c

�v(i1

�t
ui2 } } } in)

r

=cP (i1 } } } in)
r +O \v2

c2+ . (5.6)

These equations may be recast to give equations of balance type,

�m(i1 } } } in)
r

�t
+c

�m(i1 } } } in) k
r

�xk =cp(i1 } } } in)
r +O \v2

c2+ (5.7)
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with the PSTF moments and productions in LS given by

m(i1 } } } in)
r =u(i1 } } } in)

r +(r+1&n) u(i1 } } } in) k
r

vk

c
+n

v(i1

c
ui2 } } } in)

r (5.8)

p(i1 } } } in)
r =P (i1 } } } in)

r +(r&n) P (i1 } } } in) k
r

vk

c
+n

v(i1

c
Pi2 } } } in)

r . (5.9)

6. LOCAL RADIATIVE EQUILIBRIUM

The above set of Eqs. (5.6) describes radiation interacting with matter in local
radiative non-equilibrium. We investigate it in the limit of local radiative equi-
librium (LRE) and compare it with the classic theory of LRE due to Rosseland
[4].

Radiation is in LRE with matter if the photon distribution is a local Planck dis-
tribution. This is the case, if the mean free path of radiation (c�}) is of the same
order as the mean free path of matter.

We obtain the LRE equations by introducing the equilibrium values of the
moments (4.11) into the left hand sides of (5.6), a procedure is known as
Maxwellian iteration [16]. We ignore scattering and obtain for n=0, 1, 2 the
equations

�ur | E(T)
�t

+vk �ur | E(T )
�xk +

r+3
3

ur | E(T )
�vk

�xk=&:
s

3rs(T )(us&us | E(T ))

c
3

�ur | E(T )
�xi

+
vi

c
1
3

�ur | E(T )
�t

+
r+3

3
ur | E(T )

1
c

�vi

�t
=&:

s

3rs(T ) ui
s (6.1)

2
5

r+3
3

ur | E(T )
�v(i

�xj)
=&:

s

3rs(T ) u(ij)
s .

We use (4.11) to solve these equations for the radiative energy density e=cu1 , the
radiative momentum density pi=u1

i and the radiative pessure tensor N(ij)=cu(ij)
1 .

This leads to (e |E=cu1 | E=aT 4)

e=e |E &
1
}~ \

�e |E

�t
+vk �e |E

�xk +
4
3

e |E
�vk

�xk+
pi

1=&
1
3

1
}~ \

�e |E

�xi
+

vi

c2

�e |E

�t
+4e |E

�vi

�t + (6.2)

N (ij)=&
8

15
1
}~

e |E(T)
�v(i

�xj)
,
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Fig. 6.1. }� �}~ over the number of moments R for bremsstrahlung.

where we have introduced a mean absorption coefficient

1
}~

=:
r

3&1
1r

1(r+4) `(r+3)
1(5) `(4) \kBT

c +
r&1

. (6.3)

The same Eqs. (6.2) follow from the standard Rosseland procedure if }~ is replaced
by the Rossel and mean

1
}�

=
|

1
}(7 |E)

74
|E

�f |E

�7 |E
d7 |E

| 74
|E

�f |E

�7 |E
d7 |E

, (6.4)

see [17], p. 121. The Rosseland mean is widely accepted to be the correct mean
absorption coefficient in the case of LRE [14]. Thus the mean absorption coef-
ficient }~ must be compared to the Rosseland mean }� . We restrict ourselves to pure
bremsstrahlung absorption and obtain

1

}~
=

1

Dff

�q, r 1(q+4) `(q+3) A&1
qr 1(r+4) `(r+3)

1(5) `(4)
,

(6.5)

1
}�

=
1

Dff

|
77

|E d7 |E

(1&e&7|E)2 (e7|E&1)
1(5) `(4)
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with a matrix

Ars=1(r+s) `(r+s). (6.6)

Figure 6.1 shows the ratio }� �}~ for different values of the number of moments R. For
R�4 both coefficients agree, }~ converges fast to its limit }� . We conclude that our
new theory contains the Rosseland mean in the limit of LRE for R�4. Note,
however, that R=1 gives a bad result.

Here we have found a first criterion for the number R: R must be chosen so that
the mean absorption coefficient (6.2)2 is almost equal to the Rosseland mean (6.4).

7. HOMOGENEOUS COMPRESSION OF RADIATION

7.1. A Simple Experiment

Considering a simple example we prove that the new theory gives good results
in non-LRE too. We consider an experiment which may be evaluated by the
radiative transfer equation as well as by the moment equations: the homogeneous
compression of radiation and a gas. The experiment may be artificial from a practi-
cal point of view but it is instructive.

The experiment is performed in the following way (see Fig. 7.1): We consider a
cylinder which is closed by a movable piston. Piston and cylinder are coated with
ideal mirrors which guarantee that no radiation is absorbed or emitted from the
walls. The cylinder contains a large number of scattering particles and a small num-
ber of absorbing particles which we describe as an monatomic ideal gas.

Starting from an equilibrium situation with temperature T0 the piston is moved
into the cylinder, the volume decreases from V0 to V1 . The motion should be fast
enough so that the number of absorption processes during the motion is negligibly
small. Because of the large number of scattering particles (�r}) the photon dis-
tribution will be homogeneous and isotropic at all times.

Furthermore it is assumed that the collision frequency of the gas is large com-
pared to the absorption coefficient. Thus the compression of the gas follows the
adiabatic law

T1=T0 \V0

V1+
2�3

. (7.1)

Now the system is brought into contact with a heat reservoir of temperature T1 and
it is left on its own. Since the gas is always in equilibrium with itself the gas tem-
perature does not change, it is equal to T1 and, due to absorption processes, a
relaxation of the non-equilibrium between radiation and gas will start.

For this process to equilibrium the radiative transfer Eq. (3.10) reduces to

df
dt

=&}( f &f |E(T1)), (7.2)
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Fig. 7.1. Experimental setting for homogeneous compression of radiation and ideal gas.

while the moment equations (5.2) read

dur

dt
=&:

q

3rq(T1)(ur&ur
|E(T1)), r=0, 1, ..., R. (7.3)

We ask for the energy density u1 as a function of time. We will calculate u1 by three
different methods: (i) exact solution of the radiative transfer Eq. (7.2), (ii) two older
simple moment methods which rely on the Planck mean and on the Rosseland
mean, respectively, and (iii) the new moment method developed in this paper. The
results of the moment theories will be compared with the exact solution (i)

7.2. Solution of the Radiative Transfer Equation

The photon distribution directly after the compression is

f0=
V0

V1

f |E(T0). (7.4)

With this initial data we obtain from (7.2)

f (t)= f |E(T1)+\V0

V1

f |E(T0)& f |E(T1)+ e&}t. (7.5)

A suitable measure for the approach of the moments towards equilibrium are the
quantities

vr=
ur&ur

|E(T1)
(V0 �V1) ur

|E (T0)&ur
|E(T1)

. (7.6)

Directly after the compression we have vr(t=0)=1 while in equilibrium vr
|E=0

holds. With (7.5) and ur=(��c)r+3 � |r+2f d| d0 we obtain with the substitutions
x=�|�kBT0 , y=�|�kBT1

vr(t~ )=

V0

V1 \
T0

T1+
r+3

|
xr+2

ex&1
e&}~ ((T0 �T1) x) t~ dx&|

yr+2

ey&1
e&}~ (y) t~ dy

1(r+3) `(r+3) _V0

V1 \
T0

T1+
r+3

&1&
. (7.7)
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Here, we have introduced a new time scale t~ , so that

}~ ( y) t~ =}~ ( y) }� (T1) t=}t; (7.8)

in the case of bremsstrahlung absorption we have

}~ ff (y)=
1&e&y

y3 , }� ff (T1)=Dff . (7.9)

(7.7) must be evaluated numerically. Figure 7.2 shows v1 as function of t~ in the case
of bremsstrahlung absorption. For this and the following calculations the ratio of
volumes was chosen as V0 �V1=4.

7.3. Planck Mean

Due to Thorne's theory [22] the energy density under the stated assumptions
should obey the equation

du1

dt
=&}̂(u1&u1

|E(T1)) , (7.10)

where }̂ is the Planck mean of the absorption coefficient [22],

}̂=
� }73

|E f |E d7 |E

� 73
|E f |E d7 |E

. (7.11)

In the case of bremsstrahlung we obtain

}̂ff=
Dff

1(4) `(4)
=

}� ff (T1)
1(4) `(4)

(7.12)

and

v1(t~ )=exp \&
t~

1(4) `(4)+ . (7.13)

Figure 7.3 compares the predicted decay of v1 obtained from the exact solution (7.7)
and from (7.13). The Planck mean predicts a much faster decay. The difference is
large and we conclude that the method of the Planck mean should not be used in
this context.

7.4. Rosseland Mean

Due to Schweizer [20] the energy density under the stated assumptions should
obey the equation

du1

dt
=&}� (u1&u1

|E(T1)), (7.14)
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Fig. 7.2. Relaxation of v1 in the case of bremsstrahlung absorption.

where }� is the Rosseland mean of the absorption coefficient (6.4). In the case of
bremsstrahlung we obtain

}� ff=Dff
1(5) `(4)
5104.74

=}� ff (T1)
1(5) `(4)
5104.74

(7.15)

and

v1(t~ )=exp(&0.005089 t~ ). (7.16)

Figure 7.4 compares the predicted decay of v1 obtained from the exact solution (7.7)
and from (7.16).

The Rosseland mean predicts a much slower decay. The difference is large and
we conclude that the method of the Rosseland mean should not be used in this
context.

7.5. Solution of Moment Equations

We write the moment Equations (7.3) in terms of the quantities vr (7.6) and t~ ,

dvr

dt~
=&:

q

3� rqvq (7.17)
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Fig. 7.3. v1(t~ ) for bremsstrahlung from the radiative transfer equation (dotted line) and from the
Rosseland mean (continuous line).

Fig. 7.4. v1(t~ ) for bremsstrahlung from the radiative transfer equation (dotted line) and from the
Rosseland man (continuous line).

133RADIATIVE TRANSFER: EXTENDED MOMENT METHOD



File: 595J 568424 . By:XX . Date:20:07:07 . Time:05:41 LOP8M. V8.0. Page 01:01
Codes: 2041 Signs: 1283 . Length: 46 pic 0 pts, 194 mm

with the matrix (pure bremsstrahlung)

3� ff
rq=

1(q+3) `(q+3)
1(r+3) `(r+3)

V0

V1 \
T0

T1+
q+3

&1

V0

V1 \
T0

T1+
r+3

&1
:
s

1(s+r) `(s+r) C&1
sq . (7.18)

The solution for vr reads

vr(t~ )= :
p, s

MrpM &1
ps exp &:p t~ , (7.19)

where :p are the eigenvalues of 3� rq and Mrp is the matrix of its eigenvectors.
Figure 7.5 shows the decay of v1 calculated from the moment equations with the
moments ur, r=1, ..., R with R=1 and R=6 in comparison to the exact solution.
Comparison with Figure 7.3 shows that the result is already better than the result
obtained from the Planck mean.

For R=6 we find an excellent agreement between the solutions of the moment
equations and the radiative transfer equation. We conclude that moments with sub-
script r>1 must necessarily be considered.

This experiment gives a second criterion for the number R: It should be chosen
so that the solution of the moment equations coincides with the solution of the
radiative transfer equation. Note that in the process under consideration the
spectral deviation from the equilibrium phase density is simple. It is likely that R
must be increased in processes with more complicated initial data.

Fig 7.5. v1(t~ ) for bremsstrahlung from the radiative transfer equation (dotted line) and from the
moment equations for R=1, 6 (continuous line).
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8. CONCLUSION

The new theory of radiation thermodynamics with matrices of mean absorption
and scattering coefficients presents itself as a powerful tool for the description of
radiative processes. It reproduces the classical Rosseland mean in the LRE limit
and��most important��describes non-LRE processes in coincidence with the
radiative transfer equation. Since other theories fail already in the description of a
simple homogeneous process, we suggest that the new theory should be used in
non-LRE radiative transfer problems.

A detailed discussion for the inhomogeneous case of the new theory will be pub-
lished in the near future [21]. There we will give an analytic criterion for the
number of moments N. We will show that it depends on the ratio of the eigenvalues
of the matrices and a typical frequency of the process under consideration. More-
over we will give an analytical solution for a one-dimensional radiative transfer
process in an isothermal atmosphere at rest. Again, comparison with the radiative
transfer equation will demonstrate the effectiveness of the new method.
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