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Fuel Cell Stack Design

• Fuel Cells are “stacked” to place bipolar
cells in series and increase voltage and
power

• Major stack issues:
– Volume and weight

– Cooling methods

– Sealing

– Clamping
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Stack Design Objectives

Minimize Volume, Weight, Cost

Satisfy other constraints to maintain high fuel

cell performance

Conventional Stack Layout

• Bipolar plate / MEA in alternating arrangement

• Some internal humidification
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Stack Assembly

• Built up from discrete MEA, Bipolar

plate components.

• Discrete seals at each layer

• Compression applied through tie rods or

straps

• Manual Assembly
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• 3 cell un-humidified stack
MEA Layer

Bipolar Plate

Seal

Current Collector

Insulator

Compression Plate

Stack Components

University of Victoria Department of

Mechanical Engineering IESVic

Oct 30

PEM Stack Evolution

• Major advances in fuel cell power have

not been in the area of electrochemistry!!!

• Cost and performance targets have been

reached through better engineering:
• Tighter integration of components

• Reduced materials use

• Better integrated manufacturing
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PEMFC Stack Power Density

Source: Ballard Power Systems 
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PEMFC Stack Cost
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Compression & Clamping

Source: F. Barbir, PEM Fuel Cells, Elsevier, 2005 
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Early Stack Layout

Tie Rods

Bulk Manifolds

Active Area

Seals
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Alternative Clamping

Internal Tie Rods

Bulk Manifolds

Active Area

Seals
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Humidification

Source: F. Barbir, PEM Fuel Cells, Elsevier, 2005 
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Cooling
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Bounded Design Space

85 kW Automotive Fuel Cell  Design Space 
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MEA Active Area @ Full Specified Stack Power [ m2 ]

Cell Voltage [ V ]

Automotive Fuel Cell  Design Space

Courtesy: Pat Hearn, Ballard Power Systems
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Cell Voltage [V] Thermal constraint, Vc min (V) Total stack active area required [m2]

Design Space: Baseline Example

Cell R = 159 mohms- cm2

V0 = 0.829 V

1.0 mg/cm2 Cat Load @ $20/g,

$50/m2  Membrane, $20/m2  GDL,

4.4 m2 affordable

Power Density = 1700 W/L
Max Active Area = 10.6 m2

Cooling Capacity = 1800 W/K @

90 C Coolant, 35 C ambient  = 99

kW, Minimum Voltage = 0.58 V

Active Area Gap =  5.7 m2

~ 2x Stack Cost Target !
Power Density and Thermal
Constraints are Compatible

Heat Rejection Constraint

Power Density Constraint

Cost Constraint
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Baseline
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Cell Voltage [V] Thermal constraint, Vc min (V) Total stack active area required [m2]

Cost Constraint, $45/kW FCS  [m2] Power Density Constraint [m2]

4.4 m2 affordable active area

Cell R = 159 mohms- cm2

V0 = 0.829 V
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Baseline with +25% Cooling Capacity
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Cell Voltage [V] Thermal constraint, Vc min (V) Total stack active area required [m2]

Cost Constraint, $45/kW FCS  [m2] Power Density Constraint [m2]

4.4 m2 affordable active area

Cell R = 159 mohms- cm2

V0 = 0.829 V

Active Area
Gap=4.5 m2
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Cell Voltage [V] Thermal constraint, Vc min (V) Total stack active area required [m2]

Cost Constraint, $45/kW FCS  [m2] Power Density Constraint [m2]

4.4 m2 affordable active area

Cell R = 159 mohms- cm2

V0 = 0.829 V
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Base Case –20% Cell Resistance
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Cell Voltage [V] Thermal constraint, Vc min (V) Total stack active area required [m2]

Active Area
Gap=4.1 m2
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Other Stack Designs

• The ‘Plate & Frame’ stack is popular

and is the only stack being

contemplated for large volume

production

• Other approaches to stack design can

be considered and may have merit in

the long run.
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Alternate Geometries:

Virtually everybody does this
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Alternate Geometries:

A simple change
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Alternate Geometries:

The Wave Cell

Ref: W.R. Merida, G. McLean, N. Djilali, ‘Non-Planar architecture for

proton exchange membrane fuel cells’, Journal of Power Sources, 102, pp.

178-185, 2001
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Integrated MEA / Bipolar Plate

Metal

Screen

E l e c t r o l y t e

M a t e r i a l

S o l d e r e d

S u r f a c e T r a c e
V i a

P h e n o l i c

R e s i n  B o a r d
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Volume Comparison

Conventional

plate and

frameCorrugated

Waved tube cell

V

(m

m3/

m

m2)

Horizontal Axis represents critical minimum thickness (mm)

Vertical Axis

represents

volume per

active area

(mm3/mm2)
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Wave Cell Prototypes
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Wave Cell Power Density
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Other Stack Issues

• Contact between plates and MEA must

be good:

– Seals must not separate MEA from plates

– Gaps between MEA and plates cause a

low pressure drop path from inlet to outlet

– Reactants and coolant must be separated

and remain unmixed
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Correct Gasket

Substrate

Layer

Electrolyte

Flow Field Plate

Compressed

Gasket
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Gasket Casting
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Stack Design…

• Big step from single cells to stacks

• Engineering dominates chemistry in
these areas

• Stack design requires integration of
many disciplines

• There are lots of opportunities for
improved fuel cells through better stack
design
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Market Penetration Strategies

Current Market Price/Power Envelope 
(source: Manhattan Scientifics)


